Practical Machine Learning in R
"Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Pra...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic |
Language: | English |
Published: |
Newark :
John Wiley & Sons, Incorporated,
2020.
|
Subjects: | |
ISBN: | 9781119591573 1119591570 9781119591535 1119591538 1119591511 9781119591511 1523133198 9781523133192 1119591546 9781119591542 |
Physical Description: | 1 online resource (466 p.) |
LEADER | 06105cam a2200541Mu 4500 | ||
---|---|---|---|
001 | kn-on1152054630 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 200502s2020 xx o ||| 0 eng d | ||
040 | |a EBLCP |b eng |c EBLCP |d YDX |d UKMGB |d OCLCF |d UAB |d DKU |d VT2 |d SOE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d HF9 | ||
020 | |a 9781119591573 | ||
020 | |a 1119591570 | ||
020 | |a 9781119591535 |q (electronic bk.) | ||
020 | |a 1119591538 |q (electronic bk.) | ||
020 | |z 1119591511 | ||
020 | |z 9781119591511 | ||
020 | |a 1523133198 | ||
020 | |a 9781523133192 | ||
020 | |a 1119591546 | ||
020 | |a 9781119591542 | ||
035 | |a (OCoLC)1152054630 |z (OCoLC)1150921697 |z (OCoLC)1150942988 |z (OCoLC)1164363482 |z (OCoLC)1264917582 |z (OCoLC)1281712093 |z (OCoLC)1287267135 |z (OCoLC)1287876520 | ||
100 | 1 | |a Nwanganga, Fred. | |
245 | 1 | 0 | |a Practical Machine Learning in R |h [electronic resource]. |
260 | |a Newark : |b John Wiley & Sons, Incorporated, |c 2020. | ||
300 | |a 1 online resource (466 p.) | ||
336 | |a text |2 rdacontent | ||
337 | |a computer |2 rdamedia | ||
338 | |a online resource |2 rdacarrier | ||
500 | |a Description based upon print version of record. | ||
505 | 0 | |a Cover -- Title Page -- Copyright Page -- About the Authors -- About the Technical Editors -- Acknowledgments -- Contents at a Glance -- Contents -- Introduction -- What Does This Book Cover? -- Reader Support for This Book -- Part I Getting Started -- Chapter 1 What Is Machine Learning? -- Discovering Knowledge in Data -- Introducing Algorithms -- Artificial Intelligence, Machine Learning, and Deep Learning -- Machine Learning Techniques -- Supervised Learning -- Unsupervised Learning -- Model Selection -- Classification Techniques -- Regression Techniques -- Similarity Learning Techniques | |
505 | 8 | |a Model Evaluation -- Classification Errors -- Regression Errors -- Types of Error -- Partitioning Datasets -- Holdout Method -- Cross-Validation Methods -- Exercises -- Chapter 2 Introduction to R and RStudio -- Welcome to R -- R and RStudio Components -- The R Language -- RStudio -- RStudio Desktop -- RStudio Server -- Exploring the RStudio Environment -- R Packages -- The CRAN Repository -- Installing Packages -- Loading Packages -- Package Documentation -- Writing and Running an R Script -- Data Types in R -- Vectors -- Testing Data Types -- Converting Data Types -- Missing Values -- Exercises | |
505 | 8 | |a Chapter 3 Managing Data -- The Tidyverse -- Data Collection -- Key Considerations -- Collecting Ground Truth Data -- Data Relevance -- Quantity of Data -- Ethics -- Importing the Data -- Reading Comma-Delimited Files -- Reading Other Delimited Files -- Data Exploration -- Describing the Data -- Instance -- Feature -- Dimensionality -- Sparsity and Density -- Resolution -- Descriptive Statistics -- Visualizing the Data -- Comparison -- Relationship -- Distribution -- Composition -- Data Preparation -- Cleaning the Data -- Missing Values -- Noise -- Outliers -- Class Imbalance | |
505 | 8 | |a Transforming the Data -- Normalization -- Discretization -- Dummy Coding -- Reducing the Data -- Sampling -- Dimensionality Reduction -- Exercises -- Part II Regression -- Chapter 4 Linear Regression -- Bicycle Rentals and Regression -- Relationships Between Variables -- Correlation -- Regression -- Simple Linear Regression -- Ordinary Least Squares Method -- Simple Linear Regression Model -- Evaluating the Model -- Residuals -- Coefficients -- Diagnostics -- Multiple Linear Regression -- The Multiple Linear Regression Model -- Evaluating the Model -- Residual Diagnostics | |
505 | 8 | |a Influential Point Analysis -- Multicollinearity -- Improving the Model -- Considering Nonlinear Relationships -- Considering Categorical Variables -- Considering Interactions Between Variables -- Selecting the Important Variables -- Strengths and Weaknesses -- Case Study: Predicting Blood Pressure -- Importing the Data -- Exploring the Data -- Fitting the Simple Linear Regression Model -- Fitting the Multiple Linear Regression Model -- Exercises -- Chapter 5 Logistic Regression -- Prospecting for Potential Donors -- Classification -- Logistic Regression -- Odds Ratio | |
500 | |a Binomial Logistic Regression Model | ||
504 | |a Includes bibliographical references and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a "Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more"--Amazon. | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a R (Computer program language) | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Chapple, Mike. | |
776 | 0 | 8 | |i Print version: |a Nwanganga, Fred |t Practical Machine Learning in R |d Newark : John Wiley & Sons, Incorporated,c2020 |z 9781119591511 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPMLR0005/practical-machine-learning?kpromoter=marc |y Full text |