Hands-on deep learning algorithms with Python : master deep learning algorithms with extensive math by implementing them using TensorFlow

This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such...

Full description

Saved in:
Bibliographic Details
Main Author: Ravichandiran, Sudharsan, (Author)
Format: eBook
Language: English
Published: Birmingham : Packt Publishing Ltd, 2019.
Subjects:
ISBN: 9781789344516
1789344514
1789344158
9781789344158
Physical Description: 1 online resource

Cover

Table of contents

LEADER 05094cam a2200445 i 4500
001 kn-on1110716984
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 190803s2019 enk ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d UKMGB  |d OCLCO  |d UKAHL  |d OCLCF  |d N$T  |d TEFOD  |d NJT  |d STF  |d EBLCP  |d YDXIT  |d UMI  |d UAB  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
020 |a 9781789344516  |q (electronic bk.) 
020 |a 1789344514  |q (electronic bk.) 
020 |z 1789344158 
020 |z 9781789344158 
035 |a (OCoLC)1110716984  |z (OCoLC)1111433895  |z (OCoLC)1114455518  |z (OCoLC)1126570352  |z (OCoLC)1131897942 
100 1 |a Ravichandiran, Sudharsan,  |e author. 
245 1 0 |a Hands-on deep learning algorithms with Python :  |b master deep learning algorithms with extensive math by implementing them using TensorFlow /  |c Sudharsan Ravichandiran. 
264 1 |a Birmingham :  |b Packt Publishing Ltd,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book introduces basic-to-advanced deep learning algorithms used in a production environment by AI researchers and principal data scientists; it explains algorithms intuitively, including the underlying math, and shows how to implement them using popular Python-based deep learning libraries such as TensorFlow. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Getting Started with Deep Learning; Chapter 1: Introduction to Deep Learning; What is deep learning?; Biological and artificial neurons; ANN and its layers; Input layer; Hidden layer; Output layer; Exploring activation functions; The sigmoid function; The tanh function; The Rectified Linear Unit function; The leaky ReLU function; The Exponential linear unit function; The Swish function; The softmax function; Forward propagation in ANN; How does ANN learn? 
505 8 |a Debugging gradient descent with gradient checkingPutting it all together; Building a neural network from scratch; Summary; Questions; Further reading; Chapter 2: Getting to Know TensorFlow; What is TensorFlow?; Understanding computational graphs and sessions; Sessions; Variables, constants, and placeholders; Variables; Constants; Placeholders and feed dictionaries; Introducing TensorBoard; Creating a name scope; Handwritten digit classification using TensorFlow; Importing the required libraries; Loading the dataset; Defining the number of neurons in each layer; Defining placeholders 
505 8 |a Forward propagationComputing loss and backpropagation; Computing accuracy; Creating summary; Training the model; Visualizing graphs in TensorBoard; Introducing eager execution; Math operations in TensorFlow; TensorFlow 2.0 and Keras; Bonjour Keras; Defining the model; Defining a sequential model; Defining a functional model; Compiling the model; Training the model; Evaluating the model; MNIST digit classification using TensorFlow 2.0; Should we use Keras or TensorFlow?; Summary; Questions; Further reading; Section 2: Fundamental Deep Learning Algorithms 
505 8 |a Chapter 3: Gradient Descent and Its VariantsDemystifying gradient descent; Performing gradient descent in regression; Importing the libraries; Preparing the dataset; Defining the loss function; Computing the gradients of the loss function; Updating the model parameters; Gradient descent versus stochastic gradient descent; Momentum-based gradient descent; Gradient descent with momentum; Nesterov accelerated gradient; Adaptive methods of gradient descent; Setting a learning rate adaptively using Adagrad; Doing away with the learning rate using Adadelta 
505 8 |a Overcoming the limitations of Adagrad using RMSPropAdaptive moment estimation; Adamax -- Adam based on infinity-norm; Adaptive moment estimation with AMSGrad; Nadam -- adding NAG to ADAM; Summary; Questions; Further reading; Chapter 4: Generating Song Lyrics Using RNN; Introducing RNNs; The difference between feedforward networks and RNNs; Forward propagation in RNNs; Backpropagating through time; Gradients with respect to the hidden to output weight, V; Gradients with respect to hidden to hidden layer weights, W; Gradients with respect to input to the hidden layer weight, U 
590 |a Knovel  |b Knovel (All titles) 
630 0 0 |a TensorFlow. 
650 0 |a Python (Computer program language) 
650 0 |a Application software  |x Development. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |z 1789344158  |z 9781789344158  |w (OCoLC)1083564019 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpHODLAP0B/hands-on-deep?kpromoter=marc  |y Full text