Principles of turbomachinery

Saved in:
Bibliographic Details
Main Author: Korpela, S. A., (Author)
Format: eBook
Language: English
Published: Hoboken, NJ, USA : John Wiley & Sons, Inc., 2020.
Edition: Second edition.
Subjects:
ISBN: 9781119518112
1119518113
9781119518099
1119518091
1523128437
9781523128433
9781119518082
1119518083
Physical Description: 1 online resource

Cover

Table of contents

LEADER 09442cam a2200433 i 4500
001 kn-on1083156994
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 190116s2020 nju ob 001 0 eng
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d N$T  |d EBLCP  |d UKMGB  |d UKAHL  |d DLC  |d OCLCO  |d UBY  |d YDX  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119518112  |q (Adobe PDF) 
020 |a 1119518113 
020 |a 9781119518099  |q (ePub) 
020 |a 1119518091 
020 |a 1523128437 
020 |a 9781523128433 
020 |z 9781119518082  |q (hardback) 
020 |z 1119518083 
035 |a (OCoLC)1083156994  |z (OCoLC)1103320299  |z (OCoLC)1103675819  |z (OCoLC)1106081573  |z (OCoLC)1110924518  |z (OCoLC)1113900442  |z (OCoLC)1153076391 
042 |a pcc 
100 1 |a Korpela, S. A.,  |e author. 
245 1 0 |a Principles of turbomachinery /  |c Seppo A. Korpela, the Ohio State University. 
250 |a Second edition. 
264 1 |a Hoboken, NJ, USA :  |b John Wiley & Sons, Inc.,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a <P>Foreword xv</p> <p>Acknowledgments xvii</p> <p><b>1 Introduction 1</b></p> <p>1.1 Energy and Fluid machines 1</p> <p>1.1.1 Energy conversion of fossil fuels 1</p> <p>1.1.2 Steam turbines 2</p> <p>1.1.3 Gas turbines 3</p> <p>1.1.4 Hydraulic turbines 4</p> <p>1.1.5 Wind turbines 5</p> <p>1.1.6 Compressors 5</p> <p>1.1.7 Pumps and blowers 5</p> <p>1.1.8 Other uses and issues 6</p> <p>1.2 Historical survey 7</p> <p>1.2.1 Water power 7</p> <p>1.2.2 Wind turbines 8</p> <p>1.2.3 Steam turbines 9</p> <p>1.2.4 Jet propulsion 10</p> <p>1.2.5 Industrial turbines 11</p> <p>1.2.6 Pumps and compressors 12</p> <p>1.2.7 Note on units 12</p> <p><b>2 Principles of Thermodynamics and Fluid Flow 15</b></p> <p>2.1 Mass conservation principle 15</p> <p>2.2 First law of thermodynamics 17</p> <p>2.3 Second law of thermodynamics 19</p> <p>2.3.1 Tds-equations 19</p> <p>2.4 Equations of state 20</p> <p>2.4.1 Properties of steam 20</p> <p>2.4.2 Ideal gases 27</p> <p>2.4.3 Air tables and isentropic relations 29</p> <p>2.4.4 Ideal gas mixtures 32</p> <p>2.4.5 Incompressibility 35</p> <p>2.4.6 Stagnation state 36</p> <p>2.5 Efficiency 36</p> <p>2.5.1 Efficiency measures 37</p> <p>2.5.2 Thermodynamic losses 42</p> <p>2.5.3 Incompressible fluid 44</p> <p>2.5.4 Compressible flows 45</p> <p>2.6 Momentum balance 47</p> <p>Exercises 54</p> <p><b>3 Compressible Flow 61</b></p> <p>3.1 Mach number and the speed of sound 61</p> <p>3.1.1 Mach number relations 63</p> <p>3.2 Isentropic ow with area change 65</p> <p>3.2.1 Converging nozzle 69</p> <p>3.3 Influence of friction on ow through nozzles 71</p> <p>3.3.1 Polytropic efficiency 71</p> <p>3.3.2 Loss coefficients 74</p> <p>3.3.3 Nozzle efficiency 78</p> <p>3.3.4 Combined Fanno ow and area change 79</p> <p>3.4 Supersonic nozzle and normal shocks 84</p> <p>3.4.1 Converging{diverging nozzle 84</p> <p>3.5 Normal Shocks 87</p> <p>3.5.1 Rankine{Hugoniot relations 92</p> <p>3.6 Moving shocks 94</p> <p>3.7 Oblique shocks and expansion fans 96</p> <p>3.7.1 Mach waves 97</p> <p>3.7.2 Oblique shocks 97</p> <p>3.7.3 Supersonic ow over a rounded concave corner 103</p> <p>3.7.4 Reected shocks and shock interactions 104</p> <p>3.7.5 Mach reflection 106</p> <p>3.7.6 Detached oblique shocks 107</p> <p>3.7.7 Prandtl{Meyer theory 109</p> <p>Exercises 120</p> <p><b>4 Gas dynamics of wet steam 125</b></p> <p>4.1 Compressible ow of wet steam 126</p> <p>4.1.1 Clausius-Clapeyron equation 126</p> <p>4.1.2 Adiabatic exponent 127</p> <p>4.2 Conservation equations for wet steam 131</p> <p>4.2.1 Relaxation times 132</p> <p>4.2.2 Conservation equations in their working form 137</p> <p>4.2.3 Sound speeds 139</p> <p>4.3 Relaxation zones 142</p> <p>4.3.1 Type I wave 143</p> <p>4.3.2 Type II wave 147</p> <p>4.3.3 Type III wave 149</p> <p>4.3.4 Combined relaxation 149</p> <p>4.3.5 Flow in a variable area nozzle 153</p> <p>4.4 Shocks in wet steam 154</p> <p>4.4.1 Evaporation in the ow after the shock 157</p> <p>4.5 Condensation shocks 161</p> <p>4.5.1 Jump conditions across a condensation shock 163</p> <p>Exercises 167</p> <p><b>5 Principles of Turbomachine Analysis 171</b></p> <p>5.1 Velocity triangles 172</p> <p>5.2 Moment of momentum balance 175</p> <p>5.3 Energy transfer in turbomachines 176</p> <p>5.3.1 Trothalpy and specific work in terms of velocities 180</p> <p>5.3.2 Degree of reaction 183</p> <p>5.4 Utilization 184</p> <p>5.5 Scaling and similitude 191</p> <p>5.5.1 Similitude 192</p> <p>5.5.2 Incompressible ow 192</p> <p>5.5.3 Shape parameter or specific speed and specific diameter 195</p> <p>5.5.4 Compressible ow analysis 200</p> <p>5.6 Performance characteristics 201</p> <p>5.6.1 Compressor performance map 201</p> <p>5.6.2 Turbine performance map 203</p> <p>Exercises 204</p> <p><b>6 Steam Turbines 209</b></p> <p>6.1 Introduction 209</p> <p>6.2 Impulse turbines 211</p> <p>6.2.1 Single-stage impulse turbine 211</p> <p>6.2.2 Pressure compounding 220</p> <p>6.2.3 Blade shapes 224</p> <p>6.2.4 Velocity compounding 226</p> <p>6.3 Stage with zero reaction 232</p> <p>6.4 Loss coefficients 234</p> <p>Exercises 236</p> <p><b>7 Axial Turbines 239</b></p> <p>7.1 Introduction 239</p> <p>7.2 Turbine stage analysis 241</p> <p>7.3 Flow and loading coefficients and reaction ratio 245</p> <p>7.3.1 Fifty percent (50%) stage 250</p> <p>7.3.2 Zero percent (0%) reaction stage 253</p> <p>7.3.3 O -- design operation 255</p> <p>7.3.4 Variable axial velocity 257</p> <p>7.4 Three-dimensional ow 258</p> <p>7.5 Radial equilibrium 259</p> <p>7.5.1 Free vortex ow 260</p> <p>7.5.2 Fixed blade angle 264</p> <p>7.6 Constant mass flux 264</p> <p>7.7 Turbine efficiency and losses 267</p> <p>7.7.1 Soderberg loss coefficients 267</p> <p>7.7.2 Stage efficiency 268</p> <p>7.7.3 Stagnation pressure losses 270</p> <p>7.7.4 Performance charts 275</p> <p>7.7.5 Zweifel correlation 279</p> <p>7.7.6 Further discussion of losses 281</p> <p>7.7.7 Ainley{Mathieson correlation 283</p> <p>7.7.8 Secondary loss 286</p> <p>7.8 Multistage turbine 291</p> <p>7.8.1 Reheat factor in a multistage turbine 291</p> <p>7.8.2 Polytropic or small-stage efficiency 294</p> <p>Exercises 295</p> <p><b>8 Axial Compressors 301</b></p> <p>8.1 Compressor stage analysis 302</p> <p>8.1.1 Stage temperature and pressure rise 303</p> <p>8.1.2 Analysis of a repeating stage 305</p> <p>8.2 Design deflection 311</p> <p>8.2.1 Compressor performance map 314</p> <p>8.3 Radial equilibrium 315</p> <p>8.3.1 Modified free vortex velocity distribution 316</p> <p>8.3.2 Velocity distribution with zero-power exponent 319</p> <p>8.3.3 Velocity distribution with first-power exponent 321</p> <p>8.4 Diffusion factor 322</p> <p>8.4.1 Momentum thickness of a boundary layer 324</p> <p>8.5 Efficiency and losses 328</p> <p>8.5.1 Efficiency 328</p> <p>8.5.2 Parametric calculations 331</p> <p>8.6 Cascade aerodynamics 333</p> <p>8.6.1 Blade shapes and terms 333</p> <p>8.6.2 Blade forces 334</p> <p>8.6.3 Other losses 337</p> <p>8.6.4 Diffuser performance 337</p> <p>8.6.5 Flow deviation and incidence 338</p> <p>8.6.6 Multi-stage compressor 340</p> <p>8.6.7 Compressibility effects 341</p> <p>8.6.8 Design of a compressor 342</p> <p>Stage 1. 343</p> <p>Exercises 348</p> <p><b>9 Centrifugal Compressors and Pumps 353</b></p> <p>9.1 Compressor analysis 354</p> <p>9.1.1 Slip factor 355</p> <p>9.1.2 Pressure ratio 357</p> <p>9.2 Inlet design 364</p> <p>9.2.1 Choking of the inducer 369</p> <p>9.3 Exit design 371</p> <p>9.3.1 Performance characteristics 371</p> <p>9.3.2 Diffusion ratio 374</p> <p>9.3.3 Blade height 375</p> <p>9.4 Vaneless diffuser 376</p> <p>9.5 Centrifugal pumps 381</p> <p>9.5.1 Specific speed and specific diameter 385</p> <p>9.6 Fans 393</p> <p>9.7 Cavitation 393</p> <p>9.8 Diffuser and volute design 396</p> <p>9.8.1 Vaneless diffuser 396</p> <p>9.8.2 Volute design 397</p> <p>Exercises 400</p> <p><b>10 Radial in Flow Turbines 405</b></p> <p>10.1 Turbine analysis 406</p> <p>10.2 Efficiency 411</p> <p>10.3 Specific speed and specific diameter 415</p> <p>10.4 Stator ow 421</p> <p>10.4.1 Loss coefficients for stator ow 425</p> <p>10.5 Design of the inlet of a radial in flow turbine 429</p> <p>10.5.1 Minimum inlet Mach number 430</p> <p>10.5.2 Blade stagnation Mach number 436</p> <p>10.5.3 Inlet relative Mach number 437</p> <p>10.6 Design of the Exit 438</p> <p>10.6.1 Minimum exit Mach number 439</p> <p>10.6.2 Radius ratio r3s=r2 440</p> <p>10.6.3 Blade height-to-radius ratio b2=r2 442</p> <p>10.6.4 Optimum incidence angle and the number of blades 443</p> <p>Exercises 448</p> <p><b>11 Hydraulic Turbin 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Turbomachines. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Korpela, S.A.  |t Principles of turbomachinery.  |b Second edition.  |d Hoboken, NJ, USA : John Wiley & Sons, Inc., 2019  |z 9781119518082  |w (DLC) 2019001992 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPTE00022/principles-of-turbomachinery?kpromoter=marc  |y Full text