Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites
Saved in:
Other Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Duxford :
Woodhead Publishing,
©2019.
|
Series: | Woodhead Publishing series in composites science and engineering.
|
Subjects: | |
ISBN: | 9780081022986 0081022980 9780081022900 0081022905 |
Physical Description: | 1 online resource |
LEADER | 11157cam a2200457Mi 4500 | ||
---|---|---|---|
001 | kn-on1080607975 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 180924s2019 enk o 001 0 eng d | ||
040 | |a UPM |b eng |e pn |c UPM |d OCLCO |d D6H |d OCLCQ |d LVT |d MUU |d OCLCO |d OCLCQ |d OCLCO |d SFB | ||
020 | |a 9780081022986 |q (electronic bk.) | ||
020 | |a 0081022980 |q (electronic bk.) | ||
020 | 0 | |a 9780081022900 | |
020 | |a 0081022905 | ||
035 | |a (OCoLC)1080607975 |z (OCoLC)1229742046 | ||
245 | 0 | 0 | |a Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites / |c edited by Mohammad Jawaid, Mohamed Thariq, Naheed Saba. |
260 | |a Duxford : |b Woodhead Publishing, |c ©2019. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead Publishing series in composites science and engineering | |
500 | |a Includes index. | ||
505 | 0 | |a Front Cover -- Durability and Life Prediction in Biocomposites,Fibre-Reinforced Composites and Hybrid Composites -- Durability and Life Prediction in Biocomposites, Fibre-Reinforced Compositesand Hybrid Composites -- Copyright -- Dedication -- Contents -- List of contributors -- About the editors -- Preface -- 1 -- Recent studies on durability of natural/synthetic fiber reinforced hybrid polymer composites -- 1.1 Introduction -- 1.2 Durability of hybrid composites based on ultraviolet radiation effect -- 1.2.1 Ultraviolet testing methods -- 1.3 Durability of hybrid composites based on moisture absorption effect -- 1.4 Conclusions -- References -- 2 -- Durability of natural/synthetic/biomass fiber-based polymeric composites: laboratory and field tests -- 2.1 Introduction -- 2.2 Natural fibers -- 2.3 Synthetic fibers -- 2.4 Biomass fibers -- 2.5 Degradation of biofibers and its properties -- 2.6 Effect of degradation on dimensional behavior -- 2.7 Biodegradable polymers -- 2.8 Biodegradation -- 2.9 Why biodegradable polymers are notable? -- 2.10 Durability tests of biocomposites -- 2.11 Conclusion -- References -- 3 -- Prediction of the cyclic durability of woven-hybrid composites -- 3.1 Introduction -- 3.2 Woven hybrid composites -- 3.2.1 Description of woven architecture -- 3.2.2 Advantages of woven hybridization -- 3.2.3 Preparation of woven hybrid composites -- 3.2.3.1 Hand lay-up technique -- 3.2.3.2 Autoclave processing -- 3.2.3.3 Pressing techniques -- 3.3 Problems -- 3.3.1 Durability characterization -- 3.3.2 Cyclic durability measurements -- 3.4 The factors influencing the durability of woven hybrid composite -- 3.4.1 Hygrothermal behavior effects -- 3.4.2 Thermo-oxidation effects -- 3.4.3 UV-irradiation effects -- 3.5 Prediction of the cyclic durability of composites -- 3.5.1 Description of the cyclic durability test. | |
505 | 8 | |a 3.5.2 Modelization of the cyclic durability -- 3.5.2.1 Empirical/semi-empirical models (macroscopic strength models) -- 3.5.2.2 Phenomenological models for residual stiffness/strength (residual strength/stiffness models) -- Residual strength models -- Residual stiffness models -- 3.5.2.3 Progressive damage models (or mechanistic models) -- Models predicting damage growth -- Models predicting residual mechanical properties -- Hashin-Rotem -- Fawaz-Ellyin -- Sims-Brogdon -- Failure tensor polynomial in fatigue -- Bond -- Hansen -- Post -- Van Paepegem-Degrieck -- 3.5.3 Modelization of cyclic durability of woven hybrid composites -- 3.6 Conclusion -- References -- 4 -- Fatigue life prediction of textile/woven hybrid composites -- 4.1 Introduction -- 4.2 Fatigue properties of hybrid composites -- 4.3 Factors influencing mechanical properties and fatigue life of hybrid composites -- 4.3.1 Type and pattern of fibers -- 4.3.2 Matrix type -- 4.3.3 Stacking sequence -- 4.3.4 Fiber ratio -- 4.3.5 Fabrication method -- 4.3.6 Loading conditions and stress ratio -- 4.4 Summary -- References -- Further reading -- 5 -- Durability of composite materials during hydrothermal and environmental aging -- 5.1 Introduction -- 5.2 Durability of polymer composites -- 5.3 Polymer composites aging -- 5.3.1 Chemical aging -- Thermooxidation aging -- Hydrolytic aging -- Thermal aging -- 5.3.2 Physical aging -- Hydrothermal aging -- Weathering -- Biodegradation by micro-organisms -- 5.3.3 Mechanical aging -- Creep -- Fatigue -- 5.4 Accelerated aging of polymer composites -- 5.4.1 Test methods -- 5.4.2 Modeling methods -- 5.4.2.1 Thermal ageing -- 5.4.2.2 Hygrothermal aging -- 5.4.2.3 Weathering -- 5.4.2.4 UV irradiation -- 5.4.2.5 Creep -- 5.4.2.6 Fatigue -- 5.5 Conclusion -- Acknowledgments -- References -- 6 -- Impact damage analysis of hybrid composite materials. | |
505 | 8 | |a 6.1 What are hybrid composites? -- 6.2 Impact tests -- 6.3 Classification of impact tests -- 6.4 Low-velocity impact -- 6.5 Ballistic impact -- 6.6 Orbital impact -- 6.7 Damage progression -- 6.8 Nondestructive testing -- 6.9 Conclusion -- Acknowledgments -- References -- 7 -- Damage analysis of glass fiber reinforced composites -- 7.1 Introduction -- 7.2 Impact testing -- 7.2.1 Matrix cracking -- 7.2.2 Delamination -- 7.2.3 Fiber failure -- 7.3 Damage analysis using Non-destructive Evaluation (NDE) -- 7.4 Experimental procedure for damage detection -- 7.4.1 Dye penetrant -- 7.4.2 Optical microscope -- 7.5 Results from the dye penetrant testing -- 7.6 Optical microscope analysis -- 7.7 Conclusion -- Acknowledgement -- References -- 8 -- Accelerated testing methodology for long-term life prediction of cellulose-based polymeric composite materials -- 8.1 Introduction -- 8.2 Aging mechanisms in polymer composite materials -- 8.2.1 Effects of moisture and water on polymeric composite materials' performance -- 8.2.2 Polymer matrix degradation -- 8.2.3 Fiber degradation -- 8.3 Life prediction of polymeric composite materials -- 8.3.1 Life prediction in hostile environments -- 8.3.1.1 Thermal ageing -- 8.3.1.2 Temperature-moisture-stress superposition -- 8.3.1.3 Weathering complexity -- 8.3.1.4 Ionizing radiation effect -- 8.3.2 Life prediction from creep behavior -- 8.3.3 Fatigue life prediction of matrix-dominated polymeric composite materials -- 8.4 Standard accelerated ageing test methods -- 8.4.1 Liquid absorption test methods -- 8.4.2 Thermal stability test -- 8.4.3 Accelerated testing methods for oxidative aging of polymeric composites -- 8.5 Polymeric composite cellulose/cement development-case studies -- 8.5.1 Microcrystalline cellulose -- 8.5.2 Cellulose nanocrystal/cellulose nanowhisker -- 8.5.3 Cellulose nanofibril/microfibrillated cellulose. | |
505 | 8 | |a 8.5.4 Lignocellulose -- 8.6 Fabrication of sand-biocement blocks -- 8.6.1 Compressive strength of sand-biocement blocks -- 8.6.2 Density of sand-biocement blocks -- 8.6.3 Water absorption of sand-biocement blocks -- 8.7 Results and discussion -- 8.7.1 Compressive strength -- 8.7.2 Density -- 8.7.3 Water absorption -- 8.8 Conclusions and future perspective -- Acknowledgments -- References -- Further reading -- 9 -- Evaluation of the effects of decay and weathering in cellulose-reinforced fiber composites -- 9.1 Introduction -- 9.2 Degradation on material-based biomass -- 9.2.1 Biological influences on material-based biomass: an overview -- 9.2.1.1 Durability -- 9.2.1.2 Biodeterioration: classification and characterization -- 9.2.2 Environmental degradation -- 9.2.1.1 Degradation due to moisture exposure -- 9.2.1.2 Degradation due to exposure to outdoor environments -- 9.2.3 Biological degradation -- 9.3 Degradation by water and soil application -- 9.3.1 The effects of water immersion degradation on biocomposites -- 9.3.2 The effects of soil burial degradation on biocomposites -- 9.4 Degradation by weathering application -- 9.4.1 The effects of natural weathering degradation on biocomposites -- 9.4.2 The effects of artificial weathering degradation on biocomposites -- 9.5 Recent advancements of biocomposite applications for quality and durability service -- 9.6 Conclusion -- References -- 10 -- Long-term strength and durability evaluation of sisal fiber composites -- 10.1 Introduction -- 10.2 Experimental investigations -- 10.2.1 Materials used -- 10.2.2 Preparation and testing of cementitious mortar composite -- 10.3 Results and discussion -- 10.3.1 Compressive strength -- 10.3.1.1 Strength at 28days (normal age) -- 10.3.1.2 Strength at later periods (i.e., 56-120days) -- 10.3.2 Flexural strength -- 10.3.2.1 Strength at normal age (28days). | |
505 | 8 | |a 10.3.2.2 Strength at later ages (i.e., 56-120days) -- 10.3.3 Split-tensile strength -- 10.3.3.1 Strength at normal age (28days) -- 10.3.3.2 Strength at later ages (i.e., 56-120days) -- 10.3.4 Impact strength of fly ash-cement mortar and fly ash-cement mortar composite slabs -- 10.3.4.1 Normal-age behavior (28days) -- 10.3.4.2 Later-age behavior (56-120days) -- 10.3.5 Flexural strength of fly ash-cement mortar and fly ash-cement mortar composite slabs -- 10.3.6 Durability of fly ash-cement mortar and fly ash-cement mortar composite slabs -- 10.3.6.1 Evaluation of durability based on "Irs" -- 10.3.6.2 Evaluation of durability based on flexural toughness index (IT) -- 10.4 Conclusions -- 10.4.1 Strength behavior of cementitious mortar composites -- 10.4.2 Impact strength of cementitious mortar composite -- 10.4.3 Flexural strength of cementitious mortar composites -- 10.4.4 Durability of sisal fiber cementitious mortar composites -- References -- Further reading -- 11 -- The environmental impact of natural fiber composites through life cycle assessment analysis -- 11.1 Introduction -- 11.2 Review of life cycle assessment analysis for natural fiber composites -- 11.2.1 Framework of life cycle assessment analysis -- 11.2.1.1 Goal and scope definition -- 11.2.1.2 Inventory analysis -- 11.2.1.3 Impact assessment -- 11.2.1.4 Interpretation -- 11.2.2 Life cycle assessment analysis of natural fiber composites -- 11.2.2.1 Production phase -- 11.2.2.2 Use phase -- 11.2.2.3 End of life -- 11.2.3 Summary -- 11.3 Case study on simplified life cycle assessment analysis for hybrid natural fiber composite automotive components -- 11.3.1 Anti-roll bar -- 11.3.2 Hybrid sugar palm/glass fiber-reinforced polyurethane composites -- 11.3.3 Simplified life cycle assessment analysis of hybrid sugar palm and glass fiber-reinforced polyurethane composite anti-roll bar. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Composite materials |x Fatigue. | |
650 | 0 | |a Composite materials |x Testing. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Jawaid, Mohammad. | |
700 | 1 | |a Thariq, Mohamed. | |
700 | 1 | |a Saba, Naheed. | |
830 | 0 | |a Woodhead Publishing series in composites science and engineering. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpDLPBFRC1/durability-and-life?kpromoter=marc |y Full text |