Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition.

Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naïve Bayes, K-...

Full description

Saved in:
Bibliographic Details
Main Author: Bonaccorso, Giuseppe.
Format: eBook
Language: English
Published: Birmingham : Packt Publishing Ltd, 2018.
Edition: 2nd ed.
Subjects:
ISBN: 9781789345483
1789345480
1789347998
9781789347999
Physical Description: 1 online resource (514 pages)

Cover

Table of contents

LEADER 04567cam a2200433Mi 4500
001 kn-on1051137944
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 180908s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d NLE  |d YDX  |d TEFOD  |d OCLCO  |d MERUC  |d IDB  |d OCLCF  |d LVT  |d OCLCQ  |d N$T  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781789345483 
020 |a 1789345480 
020 |z 1789347998 
020 |z 9781789347999 
035 |a (OCoLC)1051137944  |z (OCoLC)1051138489  |z (OCoLC)1089804670 
100 1 |a Bonaccorso, Giuseppe. 
245 1 0 |a Machine Learning Algorithms :  |b Popular Algorithms for Data Science and Machine Learning, 2nd Edition. 
250 |a 2nd ed. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (514 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |6 880-01  |a Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: A Gentle Introduction to Machine Learning; Introduction -- classic and adaptive machines; Descriptive analysis; Predictive analysis; Only learning matters; Supervised learning; Unsupervised learning; Semi-supervised learning; Reinforcement learning; Computational neuroscience; Beyond machine learning -- deep learning and bio-inspired adaptive systems; Machine learning and big data; Summary; Chapter 2: Important Elements in Machine Learning; Data formats; Multiclass strategies. 
505 8 |a One-vs-allOne-vs-one; Learnability; Underfitting and overfitting; Error measures and cost functions; PAC learning; Introduction to statistical learning concepts; MAP learning; Maximum likelihood learning; Class balancing; Resampling with replacement; SMOTE resampling; Elements of information theory; Entropy; Cross-entropy and mutual information ; Divergence measures between two probability distributions; Summary; Chapter 3: Feature Selection and Feature Engineering; scikit-learn toy datasets; Creating training and test sets; Managing categorical data; Managing missing features. 
505 8 |a Data scaling and normalizationWhitening; Feature selection and filtering; Principal Component Analysis; Non-Negative Matrix Factorization; Sparse PCA; Kernel PCA; Independent Component Analysis; Atom extraction and dictionary learning; Visualizing high-dimensional datasets using t-SNE; Summary; Chapter 4: Regression Algorithms; Linear models for regression; A bidimensional example; Linear regression with scikit-learn and higher dimensionality; R2 score; Explained variance; Regressor analytic expression; Ridge, Lasso, and ElasticNet; Ridge; Lasso; ElasticNet; Robust regression; RANSAC. 
505 8 |a Huber regressionBayesian regression; Polynomial regression; Isotonic regression; Summary; Chapter 5: Linear Classification Algorithms; Linear classification; Logistic regression; Implementation and optimizations; Stochastic gradient descent algorithms; Passive-aggressive algorithms; Passive-aggressive regression; Finding the optimal hyperparameters through a grid search; Classification metrics; Confusion matrix; Precision; Recall; F-Beta; Cohen's Kappa; Global classification report; Learning curve; ROC curve; Summary; Chapter 6: Naive Bayes and Discriminant Analysis; Bayes' theorem. 
500 |a Introducing semi-supervised Support Vector Machines (S3VM). 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naïve Bayes, K-Means, Random Forest, and Feature engineering. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Machine learning. 
650 0 |a Computer algorithms. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Bonaccorso, Giuseppe.  |t Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789347999 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpMLAP0002/machine-learning-algorithms?kpromoter=marc  |y Full text