Process systems engineering for pharmaceutical manufacturing

Saved in:
Bibliographic Details
Other Authors: Singh, Ravendra (Research assistant professor), (Editor), Yuan, Zhihong (Assistant professor of chemical engineering), (Editor)
Format: eBook
Language: English
Published: Amsterdam, Netherlands : Elsevier, 2018.
Series: Computer-aided chemical engineering ; 41.
Subjects:
ISBN: 9780444639660
0444639667
9780444639639
Physical Description: 1 online resource

Cover

Table of contents

LEADER 11330cam a2200445 i 4500
001 kn-on1029054898
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 180320s2018 ne o 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d OPELS  |d N$T  |d UAB  |d MERER  |d OCLCF  |d D6H  |d OCLCQ  |d OCLCA  |d ESU  |d U3W  |d LVT  |d YDX  |d UMR  |d STF  |d KNOVL  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ 
020 |a 9780444639660  |q (electronic bk.) 
020 |a 0444639667  |q (electronic bk.) 
020 |z 9780444639639  |q (print) 
035 |a (OCoLC)1029054898 
245 0 0 |a Process systems engineering for pharmaceutical manufacturing /  |c edited by Ravendra Singh and Zhihong Yuan. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer aided chemical engineering ;  |v volume 41 
500 |a Includes index. 
505 0 |a Front Cover -- Process Systems Engineering for Pharmaceutical Manufacturing -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: New Product Development and Supply Chains in the Pharmaceutical Industry -- 1. Introduction -- 2. Typical Features of Pharmaceutical Industry -- 2.1. Analysis of the Product Development Process -- 2.2. Life Cycle of a Drug -- 2.3. Drug Market Features -- 2.4. Supply Chain Management -- 2.4.1. Typical features of pharmaceutical supply chains -- 2.4.2. Process systems engineering contribution -- 3. Management of Product Development Pipeline -- 3.1. Methodological Approaches -- 3.2. Related Optimization Works -- 3.2.1. Optimization of early-phase testing -- 3.2.2. Optimization of portfolio management -- 3.2.3. Clinical trial supply chain management (CTM) -- 4. Capacity Planning -- 5. Management of the Whole Pharmaceutical Supply Chain -- 6. Conclusions -- References -- Chapter 2: The development of a pharmaceutical oral solid dosage forms -- 1. Introduction -- 2. Pharmaceutical Preformulation and Its Significance in the Development of Solid Dosage Forms -- 2.1. Solid-State Properties -- 2.2. Solubility -- 2.2.1. pKa -- 2.2.2. Partition coefficient (log P) -- 2.3. Dissolution Studies -- 2.4. Stability Studies -- 2.5. Drug-Excipient Compatibility Studies -- 2.6. Physical Properties of Pharmaceutical Solids -- 3. Drug Product Manufacturing -- 3.1. Diluents -- 3.2. Binders -- 3.3. Disintegrating Agents -- 3.4. Lubricant -- 3.5. Coating Materials -- 3.5.1. Sugar coating -- Sealing -- Subcoating -- Smoothing -- Coloring -- Polishing -- 3.5.2. Film coating -- 4. Manufacturing Methods for Oral Solid Dosage Form -- 4.1. Direct Compression (Shangraw et al., 1989) -- 4.2. Granulation -- 4.2.1. Dry granulation -- 4.2.2. Wet granulation -- High shear mixture granulation (Gokhale et al., 2005). 
505 8 |a Fluidized Bed Granulation (Parikh and Mogavero, 2005) -- 5. Type of Unit Operation -- 5.1. Pharmaceutical Process Design Methodology -- 5.2. Unit Operation Design -- 5.2.1. Crystallization -- 5.2.2. Filtration and drying -- 5.2.3. Screening and size reduction -- 5.2.4. Blending -- 5.2.5. Tabletting process -- 6. Batch Versus Continuous Processing -- 7. Process Analytical Technology -- 8. Conclusions -- References -- Chapter 3: Innovative process development and production concepts for small-molecule API manufacturing -- 1. Introduction -- 2. Pharmaceutical Production Processes -- 2.1. Production of High-Molecular-Weight Pharmaceutical Products -- 2.2. Production of Low-Molecular-Weight Pharmaceutical Products -- 3. Innovative Solutions to Accelerate the Development of API Production Processes -- 3.1. Virtual Experimentation -- 3.2. Databases and Property Prediction -- 3.3. Template Processes -- 3.4. Summary -- 4. Innovative Solutions to Improve API Production Processes -- 4.1. Process Analytical Technology -- 4.2. Process Integration and Intensification -- 4.3. Solvent Selection -- 4.4. Biocatalysis -- 4.5. Flow Chemistry -- 5. Example: Sitagliptin -- 6. Future Perspectives -- References -- Chapter 4: Plantwide technoeconomic analysis and separation solvent selection for continuous pharmaceutical manufacturing ... -- 1. Introduction -- 2. CPM of Ibuprofen, Artemisinin, and Diphenhydramine -- 2.1. Continuous-Flow Syntheses -- 2.2. Batch and Continuous Separation Schemes -- 3. Economic Analysis -- 4. Results and Discussion -- 4.1. API Recoveries and Material Efficiencies -- 4.1.1. Ibuprofen (IBU) -- 4.1.2. Artemisinin (ART) -- 4.1.3. Diphenhydramine (DPH) -- 4.2. Economic Analysis -- 4.2.1. CapEx and OpEx Savings -- 4.2.2. Sensitivity Analyses: NPV, ROI, and PBP -- 5. Conclusions -- Acknowledgments -- Appendix A. API Recoveries and PMIs. 
505 8 |a Appendix B. CapEx, OpEx and Sensitivity Analyses -- References -- Chapter 5: Flowsheet modeling of a continuous direct compression process -- 1. Introduction -- 1.1. Flowsheet modeling -- 2. Continuous Direct Compression -- 2.1. Powder Feeding -- 2.2. Methods of Modeling for Powder Feeding -- 2.2.1. Perfect feeding -- 2.2.2. Perfect feeding with random variation -- 2.2.3. Feeding with control strategy -- 2.2.4. Feeding with process parameters and material properties -- 2.3. Powder Blending -- 2.3.1. Convective blenders -- 2.3.2. Gravity-driven blenders -- 2.4. Modeling Methods for Powder Blending -- 2.4.1. Population balance equation -- 2.4.2. Convolution -- 2.4.3. Tanks in series -- 2.5. Tablet press -- 2.6. Modeling methods for the Tablet Press -- 2.6.1. Feed frame -- 2.6.2. Tablet compaction -- References -- Further Reading -- Chapter 6: Applications of a plant-wide dynamic model of an integrated continuous pharmaceutical plant: Design of the rec ... -- 1. Introduction -- 2. Process Description -- 3. Plant-Wide Model -- 4. Results and Discussions -- 4.1. Impact of Wash Factors -- 4.2. Impact of Purge Ratio -- 5. Conclusions -- References -- Chapter 7: Advanced multiphase hybrid model development of fluidized bed wet granulation processes -- 1. Introduction to Granulation Modeling -- 1.1. Fluid Bed Model Development: Multiphase Flow and Granulation -- 1.2. Different Modeling Techniques -- 1.2.1. Population balance modeling -- 1.2.2. Discrete element modeling -- 1.2.3. Computational fluid dynamics -- 1.2.4. Coupled CFD-DEM modeling -- 2. Multiphase Model Development and Implementation: Fluidized Bed Wet Granulation -- 2.1. CFD-DEM: Model Development -- 2.1.1. Flow and energy models -- 2.1.2. Lagrangian multiphase models -- 2.1.3. Implicit unsteady-state model -- 2.1.4. Lagrangian passive scalar model -- 2.2. PBM: Compartmental Model Development. 
505 8 |a 2.2.1. Aggregation -- 2.2.2. Breakage -- 2.2.3. Liquid addition -- 2.2.4. Consolidation -- 2.2.5. Particle flux between compartments -- 2.3. CFD-DEM-PBM: Model Implementation -- 3. Results and Discussion -- 3.1. CFD-DEM Simulation Results -- 3.1.1. Effect on particle velocities -- 3.1.2. Effect on particle temperatures -- 3.1.3. Effect on collision frequency and circulation of particles -- 3.1.4. Effect on the particles residence time in spray zone -- 3.2. PBM Results and Validation of Hybrid Model -- 4. Summary -- References -- Chapter 8: Global sensitivity, feasibility, and flexibility analysis of continuous pharmaceutical manufacturing processes -- 1. Introduction -- 2. Global Sensitivity Analysis -- 2.1. Methods -- 2.1.1. Screening methods -- 2.1.2. Regression-based methods -- 2.1.3. Variance-based methods -- Sobol' method -- FAST and eFAST method -- 2.1.4. Metamodel-based methods -- 2.2. Visualization of Sensitivity Results -- 3. Feasibility and Flexibility Analysis -- 3.1. Methods -- 3.1.1. Traditional simulation-based approach -- 3.1.2. Surrogate-based adaptive sampling approach -- Kriging-based adaptive sampling approach -- RBF-based adaptive sampling approach -- 3.2. Visualization of Results -- 3.3. Extensions -- 4. Software -- 5. Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 9: Crystallization process monitoring and control using process analytical technology -- 1. Introduction -- 2. QbD and PAT -- 3. Liquid- and Solid-Phase Monitoring -- 3.1. ATR-FTIR and Ultraviolet-Visible Spectroscopy -- 3.2. Conductivity Measurements -- 3.3. Refractive Index Measurement -- 3.4. Turbidity Measurement -- 3.5. FBRM -- 3.6. PVM and Endoscopy -- 3.7. Raman Spectroscopy -- 3.8. Acoustic Spectroscopy (Ultrasound) -- 4. Monitoring and Control of Batch Crystallization Processes. 
505 8 |a 4.1. Optimal Switching Between Nucleation and Seed Ripening Using Control Charts -- 4.2. Concentration Feedback Control -- 4.3. ADNC -- 4.4. Polymorphic Feedback Control -- 4.5. Polymorphic Control by Optimal Solvent Selection -- 5. Monitoring and Control of Continuous Crystallization Processes -- 5.1. ADNC of Continuous Crystallization Processes -- 5.2. Polymorphic Control in Continuous Crystallization -- 5.3. Encrustation Monitoring in Continuous Crystallization -- References -- Further Reading -- Chapter 10: BioProcess performance monitoring using multiway interval partial least squares -- 1. Motivation and Background -- 2. Combining data Unfolding and Interval Splicing Techniques -- 2.1. Three-Dimensional Data Unfolding -- 2.2. Combining Data Unfolding and Interval Splicing -- 3. Fed-Batch Penicillin Simulator Prediction and Fault Monitoring -- 3.1. Fed-Batch Penicillin Production Process Simulator Overview -- 3.2. Prediction and Process Monitoring -- 4. Prediction and Monitoring Results -- 4.1. Predictive Model Performance -- 4.2. Process Performance Monitoring -- 5. Conclusions -- Funding Sources -- References -- Chapter 11: Process dynamics and control of API manufacturing and purification processes -- 1. Introduction, Objectives, and Background -- 2. Integrated Process -- 3. Model Development -- 3.1. Population Balance Model -- 3.2. Crystallizer -- 3.3. Filter -- 3.4. Dryer -- 3.5. Mixer -- 3.5.1. DEM simulation -- 3.6. Principal Component Analysis-Based ROM -- 3.7. Numerical Technique -- 4. Design Strategy of the Hybrid MPC-PID and PID Only Control System -- 4.1. Hybrid MPC-PID Design -- 4.2. PID Only Design -- 4.3. Design of Controller -- 4.4. MPC-PID Controller Equations -- 5. Performance of the Hybrid Control System -- 5.1. Comparison of Hybrid MPC-PID Scheme With PID Only Scheme -- 6. Conclusions -- Acknowledgments -- References. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Systems engineering. 
650 0 |a Pharmaceutical industry  |x Management. 
650 0 |a Manufacturing processes. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Singh, Ravendra  |c (Research assistant professor),  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjK3FH8TpBykc4mhRGpbgq 
700 1 |a Yuan, Zhihong  |c (Assistant professor of chemical engineering),  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjvft3fpyxdybPjDt3KcRq 
830 0 |a Computer-aided chemical engineering ;  |v 41. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPSEPMVC1/computer-aided-chemical?kpromoter=marc  |y Full text