Fuzzy logic control in energy systems : with design applications in MATLAB /Simulink
This book is about fuzzy logic control and its applications in managing, controlling and operating electrical energy systems. It provides a comprehensive overview of fuzzy logic concepts and techniques required for designing fuzzy logic controllers, and then discusses several applications to control...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
London :
The Institution of Engineering and Technology,
2017.
|
Series: | IET energy engineering series ;
91. |
Subjects: | |
ISBN: | 9781785611087 1785611089 9781523112876 1523112875 9781785611070 1785611070 |
Physical Description: | 1 online resource : illustrations |
LEADER | 07923cam a2200541 i 4500 | ||
---|---|---|---|
001 | kn-on1011250817 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 171111s2017 enka ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e rda |e pn |c EBLCP |d ITD |d UIU |d IDEBK |d OCLCO |d MERUC |d OCLCF |d STF |d VLB |d YDX |d N$T |d UAB |d KNOVL |d CSA |d EZ9 |d COO |d OCLCQ |d OTZ |d OCLCQ |d WYU |d BNG |d G3B |d IGB |d ERL |d AUW |d BTN |d INTCL |d MHW |d SNK |d CUV |d UKAHL |d OCLCQ |d OCL |d OCLCQ |d MM9 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d BRX | ||
020 | |a 9781785611087 |q (electronic bk.) | ||
020 | |a 1785611089 |q (electronic bk.) | ||
020 | |a 9781523112876 |q (electronic bk.) | ||
020 | |a 1523112875 |q (electronic bk.) | ||
020 | |z 9781785611070 |q (hardcover) | ||
020 | |z 1785611070 |q (hardcover) | ||
035 | |a (OCoLC)1011250817 |z (OCoLC)1008984718 |z (OCoLC)1012866067 |z (OCoLC)1016970616 |z (OCoLC)1018070097 |z (OCoLC)1021067831 |z (OCoLC)1057434298 |z (OCoLC)1076527900 |z (OCoLC)1171436428 |z (OCoLC)1229062944 | ||
100 | 1 | |a Altas, Ísmail H., |e author. | |
245 | 1 | 0 | |a Fuzzy logic control in energy systems : |b with design applications in MATLAB /Simulink / |c İsmail H. Altaş. |
264 | 1 | |a London : |b The Institution of Engineering and Technology, |c 2017. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a IET energy engineering ; |v 91 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. Fuzziness -- 1.3. Fuzzy membership functions -- 1.4. Fuzzy sets -- References -- 2. Fuzzy sets -- 2.1. Introduction -- 2.2. Fuzzy sets and fuzzy membership functions -- 2.2.1. Triangular membership function -- 2.2.2. Trapezoid membership function -- 2.2.3. Gaussian membership function -- 2.2.4. Bell membership function -- 2.2.5. Cauchy membership function -- 2.2.6. Sinusoid membership function -- 2.2.7. Sigmoid membership function -- 2.3. Properties of fuzzy membership functions -- 2.4. Fuzzy set operations -- 2.4.1. Intersection: t-norm -- 2.4.2. Union: t-conorm -- 2.4.3.Complement -- 2.4.4. De Morgan laws -- 2.5. Adjustment of fuzziness -- 2.6. Problems -- References -- 3. Fuzzy partitioning -- 3.1. Introduction -- 3.2. Theoretical approaches -- 3.3. Fuzzy partition examples in energy systems -- 3.4. Problems -- References -- 4. Fuzzy relation -- 4.1. Introduction -- 4.2. Fuzzy relation -- 4.3. Operation with fuzzy relations | |
505 | 0 | |a Note continued: 4.3.1. Intersection of two fuzzy relations -- 4.3.2. Union of two fuzzy relations -- 4.3.3. Negation of a fuzzy relation -- 4.3.4. Inverse of a fuzzy relation -- 4.3.5.Composition of fuzzy relations -- 4.3.6.Compositional rule of inference -- 4.3.7. The relational joint -- 4.4. Binary relations -- 4.5. The extension principle -- 4.5.1. The cylindrical extension -- 4.6. Fuzzy mapping -- 4.7. Problems -- References -- 5. Fuzzy reasoning and fuzzy decision-making -- 5.1. Introduction -- 5.2. Fuzzy implications -- 5.3. Approximate reasoning -- 5.4. Inference rules of approximate reasoning -- 5.4.1. Entailment rule of inference -- 5.4.2. Conjunction rule of inference -- 5.4.3. Disjunction rule of inference -- 5.4.4. Negation rule of inference -- 5.4.5. Projection rule of inference -- 5.4.6. Generalized modus ponens rule of inference -- 5.4.7.Compositional rule of inference -- 5.5. Fuzzy reasoning -- 5.5.1. Inference engine with single input single rule | |
505 | 0 | |a Note continued: 5.5.2. Inference engine with multiple input single rule -- 5.5.3. Inference engine with multiple input multiple rule -- 5.6. Problems -- References -- 6. Fuzzy processor -- 6.1. Introduction -- 6.2. Mamdani fuzzy reasoning -- 6.2.1. Fuzzification -- 6.2.2. Fuzzy rule base -- 6.2.3. Fuzzy conclusion -- 6.2.4. Defuzzification -- 6.3. Takagi-Sugeno fuzzy reasoning -- 6.4. Tsukamoto fuzzy reasoning -- 6.5. Problems -- References -- 7. Fuzzy logic controller -- 7.1. Introduction -- 7.2. Physical system behaviors and control -- 7.3. Fuzzy processor for control -- 7.3.1. Fuzzy rules: the modeling of thoughts -- 7.3.2. The input -- output interaction -- 7.4. Modeling the FLC in MATLAB -- 7.5. Modeling the FLC in Simulink -- 7.6. Problems -- References -- 8. System modeling and control -- 8.1. Introduction -- 8.2. System modeling -- 8.3. Modeling electrical systems -- 8.4. Modeling mechanical systems -- 8.4.1. Mechanical systems with linear motion | |
505 | 0 | |a Note continued: 8.4.2. Mechanical systems with rotational motion -- 8.5. Modeling electromechanical systems -- 8.5.1. Field subsystem -- 8.5.2. Armature subsystem -- 8.5.3. Mechanical subsystem -- 8.5.4. Electromechanic interaction subsystem -- 8.5.5. Modeling DC motors -- 8.5.6. Modeling AC motors -- 8.6. Problems -- References -- 9. FLC in power systems -- 9.1. Introduction -- 9.2. Excitation control -- 9.2.1. Excitation system modeling -- 9.2.2. State-space model of excitation systems -- 9.2.3. FLC of excitation systems -- 9.3. LF control -- 9.3.1. Small signal modeling of power systems -- 9.3.2. FLC design for LFC -- 9.4. FLC in power compensation -- 9.4.1. Power factor improvement -- 9.4.2. Bus voltage control -- 9.5. Problems -- References -- 10. FLC in wind energy systems -- 10.1. Introduction -- 10.2. Wind turbine -- 10.3. Electrical generator -- 10.3.1. Dynamic modeling of induction generator -- 10.3.2. Self-excited induction generator -- 10.4. FLC examples in WEC systems | |
505 | 0 | |a Note continued: 10.5. Problems -- References -- 11. FLC in PV solar energy systems -- 11.1. Introduction -- 11.2. PV cell modelings -- 11.2.1. Reference I -- V characteristics of a PV panel -- 11.2.2. Effects of changes in solar irradiation and temperature -- 11.2.3. PV panel modeling in Simulink -- 11.2.4.A PV array emulator -- 11.3. MPP search in PV arrays -- 11.3.1. MPP by lookup tables -- 11.3.2. MPP search algorithm based on measurements of SX and TX -- 11.3.3. MPP search algorithm based on voltage and current measurements -- 11.3.4. MPP search algorithm based on online repetitive method -- 11.4. MPPT of PV arrays -- 11.4.1. Constant maximum power angle approach -- 11.4.2. Online load matching approach -- 11.5. Problems -- References -- 12. Energy management and fuzzy decision-making -- 12.1. Introduction -- 12.2. Distributed generation and control -- 12.3. Energy management in a renewable integration system -- 12.3.1. Centralized control of distributed renewable energy systems | |
505 | 0 | |a Note continued: 12.3.2. Distributed control of renewable energy systems -- 12.4. Problems -- References. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a This book is about fuzzy logic control and its applications in managing, controlling and operating electrical energy systems. It provides a comprehensive overview of fuzzy logic concepts and techniques required for designing fuzzy logic controllers, and then discusses several applications to control and management in energy systems. | ||
590 | |a Knovel |b Knovel (All titles) | ||
630 | 0 | 0 | |a MATLAB. |
630 | 0 | 7 | |a MATLAB |2 fast |
650 | 0 | |a Electric power systems |x Control. | |
650 | 0 | |a Fuzzy logic. | |
650 | 0 | |a Numerical analysis |x Computer programs. | |
650 | 0 | |a Fuzzy logic |v Congresses. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Print version: |a Altaş, İsmail H. |t Fuzzy logic control in energy systems. |d London : The Institution of Engineering and Technology, 2017 |z 9781785611070 |w (OCoLC)1014434727 |
830 | 0 | |a IET energy engineering series ; |v 91. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpFLCESWM1/fuzzy-logic-control?kpromoter=marc |y Full text |