Reactive polymers fundamentals and applications : a concise guide to industrial polymers
Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers, Third Edition introduces engineers and scientists to a range of reactive polymers and then details their applications and performance benefits. Basic principles and industrial processes are described for each c...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Amsterdam :
William Andrew is an imprint of Elsevier,
2018.
|
Edition: | Third edition. |
Series: | PDL handbook series.
|
Subjects: | |
ISBN: | 9780128145104 0128145102 9780128145098 0128145099 |
Physical Description: | 1 online resource : illustrations |
LEADER | 12696cam a2200481 i 4500 | ||
---|---|---|---|
001 | kn-on1007520795 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 171025s2018 ne a ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OPELS |d UAB |d STF |d MERER |d ZCU |d D6H |d KNOVL |d ERL |d DKU |d OCLCF |d CEF |d U3W |d OCLCQ |d LVT |d AU@ |d S2H |d OCLCO |d NLE |d VT2 |d OCLCQ |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
020 | |a 9780128145104 |q (electronic bk.) | ||
020 | |a 0128145102 |q (electronic bk.) | ||
020 | |a 9780128145098 |q (electronic bk.) | ||
020 | |a 0128145099 |q (electronic bk.) | ||
035 | |a (OCoLC)1007520795 |z (OCoLC)1012136289 |z (OCoLC)1097110721 |z (OCoLC)1240524179 |z (OCoLC)1244440441 | ||
100 | 1 | |a Fink, Johannes Karl, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjDRrjXmJpTd7RkVC6FPKm | |
245 | 1 | 0 | |a Reactive polymers fundamentals and applications : |b a concise guide to industrial polymers / |c Johannes Karl Fink. |
246 | 3 | 0 | |a Reactive polymers |
250 | |a Third edition. | ||
264 | 1 | |a Amsterdam : |b William Andrew is an imprint of Elsevier, |c 2018. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Plastics Design Library | |
504 | |a Includes bibliographical references and index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers, Third Edition introduces engineers and scientists to a range of reactive polymers and then details their applications and performance benefits. Basic principles and industrial processes are described for each class of reactive resin (thermoset), as well as additives, the curing process, applications and uses. The initial chapters are devoted to individual resin types (e.g., epoxides, cyanacrylates), followed by more general chapters on topics such as reactive extrusion and dental applications. Injection molding of reactive polymers, radiation curing, thermosetting elastomers, and reactive extrusion equipment are covered as well. The use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process, which, in turn, cause changes in performance and properties. Material selection and control of the reaction are essential to achieve optimal performance. Material new to this edition includes the most recent developments, applications and commercial products for each chemical class of thermosets, as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers and case studies. | ||
505 | 0 | |a Front Cover -- Reactive Polymers: Fundamentals and Applications -- Copyright -- Contents -- Preface -- Preface to Third Edition -- Preface to Second Edition -- Preface to First Edition -- How to Use this Book -- Index -- Acknowledgments -- 1 Unsaturated Polyester Resins -- 1.1 History -- 1.2 Monomers -- 1.2.1 Monomers for an Unsaturated Polyester -- 1.2.1.1 Alcohol Components -- 1.2.1.2 Acid and Anhydride Components -- 1.2.1.3 Amine Modi ers -- 1.2.1.4 Dicyclopentadiene -- 1.2.2 Vinyl Monomers -- 1.2.2.1 Styrenes -- 1.2.2.2 Acrylates and Methacrylates -- 1.2.2.3 Vinyl Ethers -- 1.2.2.4 Other Vinyl Monomers -- 1.2.2.5 Biobased Vinyl Oligomers -- 1.2.3 Specialities -- 1.2.3.1 Flame Retardant Phosphorous Containing Monomers -- 1.2.3.2 Monomers for Waterborne Unsaturated Polyesters -- 1.2.3.3 Low Emission Modi ers -- 1.2.3.4 Epoxide-Based Unsaturated Polyesters -- 1.2.3.5 Isocyanates -- 1.2.3.6 o-Carboxy Phthalanilic Acid -- 1.2.3.7 Modi ed Plant Oils -- 1.2.4 Synthesis -- 1.2.4.1 Kinetics of Polyesteri cation -- 1.2.4.2 Sequence Distribution of Double Bonds -- 1.2.4.3 Enzyme-Catalyzed Polymerization -- 1.2.4.4 Post Polymerization Modi cation -- 1.2.5 Manufacture -- 1.3 Special Additives -- 1.3.1 Inhibitors -- 1.3.1.1 Shelf Life Extension -- 1.3.2 Thickeners -- 1.3.2.1 Multivalent Salts -- 1.3.2.2 Thixotropic Additives -- 1.3.2.3 Organoclays -- 1.3.3 Emission Suppressants -- 1.3.4 Fillers -- 1.3.4.1 Inorganic Fillers -- 1.3.4.2 Wood Flour -- 1.3.4.3 Rubber -- 1.3.4.4 Nanocomposites -- 1.3.4.5 Nanoclays -- 1.3.4.6 Carbon Nanotubes -- 1.3.5 Reinforcing Materials -- 1.3.5.1 Glass Fibers -- 1.3.5.2 Wollastonite -- 1.3.5.3 Carbon Fibers -- 1.3.5.4 Natural Fibers -- 1.3.6 Additives for Molding Applications -- 1.3.6.1 Mixture Stabilizing Additives -- 1.3.6.2 Mold Release Agents -- 1.3.7 Low-Pro le Additives -- 1.3.8 Interpenetrating Polymer Networks. | |
505 | 8 | |a 1.3.8.1 Poly(urethane)s -- 1.3.8.2 Epoxides -- 1.3.8.3 Vinylester Resins -- 1.3.8.4 Phenolic Resins -- 1.3.8.5 Organic-Inorganic Hybrids -- 1.3.9 Poly(urethane) Hybrid Networks -- 1.3.9.1 UV Stabilizers -- 1.3.10 Flame Retardants -- 1.3.10.1 Flame Retardant Additives -- 1.3.10.2 Flame Retardant Polyester Components -- 1.3.10.3 Flame Retardant Vinyl Monomers -- 1.3.10.4 Foaming Agent -- 1.3.11 Production Data -- 1.4 Curing -- 1.4.1 Initiator Systems -- 1.4.1.1 In Situ Generated Peroxides -- 1.4.1.2 Functional Peroxides -- 1.4.1.3 Photoinitiators -- 1.4.2 Low Temperature Curing -- 1.4.3 Promoters -- 1.4.4 Initiator Promoter Systems -- 1.4.5 Polymerization -- 1.4.5.1 Kinetics of Curing -- 1.4.5.2 Catalysis by Nanoparticles -- 1.4.5.3 Phase Separation -- 1.5 Properties -- 1.5.1 Structure Properties Relationships -- 1.5.2 Hydrolytic Stability -- 1.5.3 Recycling -- 1.5.3.1 Microwave Radiation -- 1.5.3.2 Poly(ethylene terephthalate) Waste Products -- 1.5.3.3 Cured Unsaturated Polyester Resin Waste -- 1.6 Applications and Uses -- 1.6.1 Decorative Specimens -- 1.6.2 Polyester Concrete -- 1.6.3 Reinforced Materials -- 1.6.4 Pre-accelerated Resin Compositions -- 1.6.5 Coatings -- 1.6.5.1 Powder Coatings -- 1.6.5.2 Coatings with Vinyl Ethers -- 1.6.5.3 Coatings with Blister Resistance -- 1.6.5.4 Corrosion Protection of Carbon Steel Oil Pipelines -- 1.6.5.5 Impregnation Coatings -- 1.6.6 Medical Uses -- 1.6.6.1 Adsorption of Pharmaceuticals -- 1.6.6.2 Braille Blocks -- 1.7 Special Formulations -- 1.7.1 Vinyl Ester Resins -- 1.7.2 Electrically Conductive Resins -- 1.7.3 Poly(e-caprolactone)-per uoropolyether Copolymers -- 1.7.4 Toner Compositions -- 1.7.5 Pour Point Depressants -- 1.7.6 Biodegradable Polyesters -- 1.7.7 Neutron Shielding -- 1.7.8 Bone Cement -- 1.7.9 Compatibilizers -- 1.7.10 Reactive Melt Modi cation of Poly(propylene). | |
505 | 8 | |a 1.7.11 Encapsulation of Electric and Electronic Parts -- 1.7.12 Lamp Re ector -- 1.7.13 LED Re ector -- 1.7.14 Toner Resins -- References -- 2 Poly(urethane)s -- 2.1 History -- 2.2 Monomers -- 2.2.1 Diisocyanates -- 2.2.1.1 Toluene Diisocyanate -- 2.2.1.2 Diphenylmethane diisocyanate -- 2.2.1.3 Aliphatic Diisocyanates -- 2.2.1.4 Modi ed Diisocyanates -- 2.2.1.5 Enzymatic Synthesis of Poly(urethane)s -- 2.2.1.6 Synthesis of Urethanes via Carbonate Esters -- 2.2.2 Polyols -- 2.2.2.1 Polyether Polyols -- 2.2.2.2 Polyester Polyols -- 2.2.3 Other Polyols -- 2.2.3.1 Hydrocarbon Polyols -- 2.2.3.2 Polythioether Polyols -- 2.2.3.3 Polyacetal Polyols -- 2.2.3.4 Acrylic Polyols -- 2.2.3.5 Lique ed Wood -- 2.2.3.6 Natural Hydroxyl Compounds -- 2.2.4 Polyamines -- 2.2.5 Chain Extenders -- 2.2.6 Catalysts -- 2.2.7 Blowing -- 2.2.7.1 Gelling and Crosslinking -- 2.2.7.2 Tertiary Amine Catalysts -- 2.2.7.3 Mechanisms of Tertiary Amine Catalysts -- 2.2.7.4 Reactive Catalysts -- 2.2.7.5 Anionic Catalysts -- 2.2.7.6 Organometallic Catalysts -- 2.3 Special Additives -- 2.3.1 Fillers -- 2.3.1.1 Cork -- 2.3.1.2 Agar -- 2.3.1.3 Carbon Nanomaterials -- 2.3.1.4 Rectorite Nanocomposites -- 2.3.1.5 Zeolite -- 2.3.1.6 Iron Particles -- 2.3.2 Reinforcing Materials -- 2.3.2.1 Cellulose Nano bers -- 2.3.2.2 Nanosilica Particles -- 2.3.2.3 Layered Silicate Nanocomposites -- 2.3.2.4 Nanoclays -- 2.3.2.5 Nano Carbonate Particles -- 2.3.2.6 Amino-Functionalized Carbon Nano bers -- 2.3.2.7 Coated Fabric -- 2.3.3 Flame Retardants -- 2.3.3.1 Poly(epichlorohydrin) -- 2.3.3.2 Polyphosphates -- 2.3.3.3 Expandable Graphite -- 2.3.3.4 Charring Agents -- 2.4 Curing -- 2.4.1 Recycling -- 2.4.1.1 Solvolysis -- 2.4.1.2 Ultrasonic Reactor -- 2.4.1.3 Polyacetal-Modi ed Poly(urethane)s -- 2.4.1.4 Production Wastes -- 2.4.1.5 Agricultural Wastes -- 2.4.1.6 Waste Water. | |
505 | 8 | |a 2.4.1.7 Urea-Free Compositions -- 2.5 Properties -- 2.5.1 Mechanical Properties -- 2.5.2 Thermal Properties -- 2.5.3 Weathering Resistance -- 2.6 Applications and Uses -- 2.6.1 Casting -- 2.6.2 Foams -- 2.6.2.1 Nano Tin Oxide Composites -- 2.6.2.2 Conductive Foams -- 2.6.2.3 Foams for Carbon Dioxide Capture -- 2.6.2.4 Foams from Recycled Poly(urethane) -- 2.6.3 Membranes -- 2.6.3.1 Graphene Oxide/Polyurethane Nanocomposite -- 2.6.4 Passive Air Samplers -- 2.6.5 Identi cation Tagging -- 2.7 Special Formulations -- 2.7.1 Interpenetrating Networks -- 2.7.1.1 Water Desalination -- 2.7.2 Methacrylate Copolymers -- 2.7.3 Grafting with Isocyanates -- 2.7.3.1 Chitosan -- 2.7.4 Composites for Thermal Energy Storage -- 2.7.5 Coatings -- 2.7.5.1 Waterborne Surface Coating Material -- 2.7.5.2 Coatings for Golf Balls -- 2.7.6 Medical Applications -- 2.7.6.1 Siloxane-Based Poly(urethane)s -- 2.7.6.2 Blood Compatibility -- 2.7.6.3 Degradable Poly(urethane)s -- 2.7.6.4 Polyurethanes with Controlled Hydrophobic to Hydrophilic Ratio -- 2.7.6.5 Encapsulation of ß-Sitosterol -- 2.7.6.6 Polyurethane Keratin Silver Nanoparticle Mats -- 2.7.6.7 Prevention of Poly(urethane) Heart Valve Cusp Calci cation -- 2.7.6.8 Controlled Release -- 2.7.6.9 Continuous Glucose Sensors -- 2.7.7 Solid State Fermentation -- 2.7.8 Catalysis of the Knoevenagel Reaction -- 2.7.9 Oil Spill Cleanup -- 2.7.10 Bio ltration of Organic Compounds -- 2.7.11 Footwear -- 2.7.12 Waterborne Poly(urethane)s -- 2.7.13 Elastic Conductive Filaments -- 2.7.14 Non-Isocyanate Poly(urethane) Systems -- 2.7.15 Biobased Networks -- 2.7.16 Stamps -- 2.7.17 Nanowire Electrodes -- 2.7.18 Electromagnetic Interference Shielding -- 2.7.19 Electrically Conductive Adhesives -- 2.7.20 Ceramic Foams -- 2.7.20.1 Heat Press Molding -- 2.7.21 Adhesion Modi cation -- 2.7.22 Electrolytes -- 2.7.23 3 D Printing -- References. | |
505 | 8 | |a 3 Epoxy Resins -- 3.1 History -- 3.2 Monomers -- 3.2.1 Epoxides -- 3.2.1.1 Epoxide Equivalent Weight -- 3.2.2 Phenols -- 3.2.3 Specialities -- 3.2.3.1 Hyperbranched Polymers -- 3.2.3.2 Liquid Crystalline Epoxide Resins -- 3.2.3.3 Bio-Based Monomers -- 3.2.4 Manufacture -- 3.2.4.1 Epoxides -- 3.2.4.2 Glycidyl Ethers -- 3.2.4.3 Fluorinated Epoxides -- 3.2.4.4 Epoxy Resins with Disul de Moieties -- 3.2.4.5 Cycloaliphatic Epoxy Compounds -- 3.2.4.6 Supramolecular Polymers -- 3.3 Special Additives -- 3.3.1 Crosslinking Agents -- 3.3.2 Toughening Agents -- 3.3.2.1 Polyvinyl Compounds -- 3.3.2.2 Polycondensates -- 3.3.2.3 Liquid Rubbers -- 3.3.2.4 Silicone Elastomers -- 3.3.2.5 Rubbery Epoxy Compounds -- 3.3.2.6 Phase Separation -- 3.3.2.7 Preformed Particles -- 3.3.2.8 Inorganic Particles -- 3.3.3 Antiplasticizers -- 3.3.4 Lubricants -- 3.3.5 Adhesion Improvers -- 3.3.6 Conductivity Modi ers -- 3.3.7 Accelerators -- 3.3.7.1 Piperazine Compounds -- 3.3.7.2 Semicarbazones -- 3.3.8 Reinforcing Materials -- 3.3.8.1 Composites and Laminates -- 3.3.8.2 Nanocomposites -- 3.3.9 Graphene -- 3.3.9.1 In Situ Exfoliation -- 3.3.9.2 Functionalization -- 3.3.10 Interpenetrating Polymer Networks -- 3.3.10.1 Curing Kinetics -- 3.3.10.2 Unsaturated Polyesters -- 3.3.10.3 Acrylics -- 3.3.10.4 Urethane-Modi ed Bismaleimide -- 3.3.10.5 Poly(caprolactone) and Poly(urethane) -- 3.3.10.6 Electrically Conductive Networks -- 3.3.11 Organic and Inorganic Hybrids -- 3.3.12 Flame Retardants -- 3.3.12.1 Polyphosphazene Nanotubes -- 3.3.12.2 Polyphosphazene Nanoshells -- 3.3.12.3 Burning Behavior -- 3.3.12.4 Phosphazenes -- 3.3.12.5 Phosphonamidate-Phosphonate -- 3.3.12.6 Phosphorus-Containing Epoxy Resins -- 3.3.12.7 Phosphonic Acid Salts -- 3.3.12.8 Polysiloxane-Containing Nitrogen -- 3.3.13 Corrosion Inhibitor -- 3.3.14 Production Data -- 3.4 Curing -- 3.4.1 Initiator Systems. | |
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Gums and resins, Synthetic. | |
650 | 0 | |a Gums and resins |x Industrial applications. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | |z 0128145099 | |
830 | 0 | |a PDL handbook series. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpRPFAAC1P/reactive-polymers-fundamentals?kpromoter=marc |y Full text |