Nanobiomaterials : nanostructured materials for biomedical applications
Saved in:
Other Authors: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Duxford, United Kingdom :
Woodhead Publishing,
[2018]
|
Edition: | First edition. |
Series: | Woodhead Publishing series in biomaterials.
|
Subjects: | |
ISBN: | 9780081007259 0081007256 0081007167 9780081007167 |
Physical Description: | 1 online resource : illustrations |
LEADER | 11326cam a2200481 i 4500 | ||
---|---|---|---|
001 | kn-on1004271357 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 170919t20182018enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d IDEBK |d EBLCP |d N$T |d UIU |d OPELS |d OCLCF |d MERER |d OCLCQ |d UPM |d STF |d ZCU |d D6H |d KNOVL |d ERL |d DKU |d U3W |d CEF |d COO |d OCLCQ |d LVT |d AU@ |d LQU |d OCLCQ |d UX1 |d S2H |d OCLCO |d VT2 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d K6U |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
020 | |a 9780081007259 |q (electronic bk.) | ||
020 | |a 0081007256 |q (electronic bk.) | ||
020 | |a 0081007167 | ||
020 | |a 9780081007167 | ||
020 | |z 9780081007167 | ||
035 | |a (OCoLC)1004271357 |z (OCoLC)1097102850 |z (OCoLC)1105196900 |z (OCoLC)1105573165 |z (OCoLC)1235846121 | ||
245 | 0 | 0 | |a Nanobiomaterials : |b nanostructured materials for biomedical applications / |c edited by Roger Narayan. |
250 | |a First edition. | ||
264 | 1 | |a Duxford, United Kingdom : |b Woodhead Publishing, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Woodhead Publishing series in biomaterials | |
500 | |a Includes index. | ||
504 | |a Includes bibliographical references at the end of each chapters and index. | ||
505 | 0 | |a Front Cover -- Nanobiomaterials: Nanostructured Materials for Biomedical Applications -- Copyright -- Contents -- List of contributors -- Chapter 1: Nanostructured ceramics -- 1.1 Introduction -- 1.2 Test methods for nanostructured ceramics -- 1.2.1 Micro/nanostructural evaluation -- 1.3 Nanostructured bioceramics -- 1.3.1 Low temperature chemical bonding -- 1.3.2 Why nanostructures in chemically bonded ceramics? -- 1.3.3 Nanostructures in the Ca-aluminate-Ca-phosphate system (CAPH) -- 1.4 Application field of nanostructured bioceramics -- 1.4.1 Dental applications including coating products -- 1.4.2 Orthopedic applications -- 1.4.3 Drug delivery carrier applications -- 1.5 Conclusion and summary -- Acknowledgement -- References -- Chapter 2: Bio-based nanostructured materials -- 2.1 Introduction -- 2.2 Polysaccharide-based nanomaterials -- 2.2.1 Chitin -- 2.2.2 Chitosan -- 2.2.3 Cellulose -- 2.3 Carbon -- 2.4 Clay -- 2.5 Plant proteins -- 2.6 Keratin -- 2.7 Phage -- 2.8 Natural bioceramics -- 2.9 Conclusion and future trends -- References -- Chapter 3: Self-assembled nanomaterials -- 3.1 Introduction -- 3.2 Why self-assembled nanomaterials? -- 3.3 Polymer-based self-assembled carriers -- 3.3.1 Polymeric nanoparticles -- 3.3.1.1 Nanospheres -- 3.3.1.2 Nanocapsules -- 3.3.1.3 Nanogels -- 3.3.1.4 Polymeric micelles -- 3.3.1.5 Polymersomes -- 3.3.1.6 Liquid crystals -- 3.3.1.7 Dendrimers -- 3.4 Lipid-based self-assembled carriers -- 3.4.1 Liposomes -- 3.4.2 Solid lipid nanoparticles -- 3.4.3 Lipid nanocapsules -- 3.4.4 Microemulsions -- 3.4.5 Self-microemulsifing drug delivery systems -- 3.5 Concluding remarks and future perspectives -- References -- Chapter 4: Nanowires for biomedical applications -- 4.1 Introduction -- 4.2 Fabrication -- 4.3 Biocompatibility -- 4.4 Application -- 4.4.1 Neural interface -- 4.4.2 Tissue engineering. | |
505 | 8 | |a 4.4.3 Force sensing -- References -- Further reading -- Chapter 5: [60]Fullerene and derivatives for biomedical applications -- 5.1 Introduction -- 5.2 Physicochemical properties -- 5.3 Physical properties responsible of the main biological effects -- 5.3.1 Shape and size -- 5.3.2 Singlet oxygen (1O2) formation -- 5.3.3 Free-radical scavenging -- 5.4 Potential biomedical applications -- 5.4.1 Enzyme inhibition -- 5.4.2 Imaging and radiotherapy -- 5.4.3 Photodynamic therapy -- 5.4.4 Free-radical scavenging -- 5.4.5 Miscellaneous -- 5.5 Toxicity, pharmacokinetics, metabolism, and excretion -- 5.5.1 Toxicity -- 5.5.1.1 Toxicity studies on pristine C60 -- 5.5.1.2 Toxicity of noncovalently modified C60 -- 5.5.1.3 Toxicity of covalently modified C60 -- 5.5.2 Pharmacokinetics, metabolism and excretion -- 5.5.2.1 Studies on unmodified C60 -- 5.5.2.2 Studies on C60 derivatives -- 5.6 Conclusion -- References -- Further reading -- Chapter 6: Self-assembled monolayers in biomaterials -- 6.1 Introduction -- 6.1.1 Scope of this chapter -- 6.2 Self-assembled monolayers -- 6.2.1 Chemical modification of gold surfaces by the SAMs -- 6.2.1.1 SAMs preparation and structure -- 6.2.1.2 Kinetic studies of the SAM formation -- 6.2.1.3 Single/mono and mixed SAMs -- 6.2.1.4 Factors governing the formation of SAMs -- 6.2.1.5 Characterization of the SAMs -- 6.2.1.6 Effect of alkanethiols SAMs on protein adsorption and cell behavior -- 6.2.2 Organosilane-based SAMs on silicon surfaces -- 6.2.2.1 Factors affecting the formation of organosilane SAMs -- Water -- Temperature -- Solvent -- 6.2.2.2 Interface properties: wettability, surface tension, topography and potential -- 6.2.2.3 Modifications of SAMs and patterning -- Click chemistry -- Nucleophilic substitution -- Supramolecular modification -- SAMs patterning -- 6.2.2.4 Biomolecules' behavior on silane SAMs-modified surfaces. | |
505 | 8 | |a Protein adsorption -- Cell adhesion -- 6.2.3 SAMs based on long polymers -- 6.2.3.1 Polymeric SAMs -- Biomolecules at polymer brushes -- 6.3 Conclusion -- References -- Chapter 7: Nanostructured surfaces in biomaterials -- 7.1 Introduction -- 7.2 Surface modification methods of titanium -- 7.3 Bulk nanostructured titanium -- 7.4 Bulk titanium-bioceramic nanocomposites -- 7.5 Nanostructured surfaces -- 7.6 Antibacterial activity of nanostructured Ti-45S5 Bioglass-Ag composite -- 7.7 Conclusion -- References -- Chapter 8: Magnetic nanoparticle synthesis -- 8.1 Introduction -- 8.2 Production of magnetic nanoparticles -- 8.2.1 Mechanical milling -- 8.2.2 Co-precipitation -- 8.2.3 Nanoreactors/microemulson techniques -- 8.2.4 Sonochemical processing -- 8.2.5 Sol-gel methods -- 8.2.6 Flow injection -- 8.2.7 Electrochemical production -- 8.2.8 Supercritical fluid techniques -- 8.2.9 Thermal decomposition -- 8.2.10 Hydrothermal routes -- 8.2.11 Microwave techniques -- 8.2.12 Spray pyrolysis -- 8.2.13 Laser pyrolysis -- 8.2.14 Flame spray pyrolysis -- 8.2.15 Gas phase synthesis -- 8.2.16 Arc discharge -- 8.2.17 Oxidation -- 8.2.18 Microbial methods -- 8.3 Stabilization/coating methods -- 8.3.1 Polymers -- 8.3.2 Precious metals -- 8.3.3 Silica -- 8.3.4 Carbon -- 8.3.5 Oxidation -- 8.3.6 Physical encapsulation -- 8.4 Conclusions -- References -- Further reading -- Chapter 9: Toxicity of nanostructured biomaterials -- 9.1 Nanotoxicology: Concepts and claims -- 9.2 Dose and dosimetry of nanobiomaterials -- 9.3 Surface topography of nanobiomaterials and associated surface reactivity -- 9.4 NPs and the environment -- 9.5 Interfaces between nanobiomaterials and target cells -- 9.6 Routes of entry of nanobiomaterials -- 9.7 Effect of nanobiomaterials on biomolecules -- 9.8 Nanobiomaterials and their effect on DNA. | |
505 | 8 | |a 9.9 In vivo toxicology of nanobiomaterials in humans: Prospective mechanisms -- 9.10 Toxicity of different nanostructured biomaterials -- 9.10.1 Gold NPs -- 9.10.2 Silver NPs -- 9.10.3 Silica NPs -- 9.10.4 Selenium NPs -- 9.10.5 Titanium dioxide NPs -- 9.10.6 Zinc oxide NPs -- 9.10.7 Cerium oxide NPs -- 9.10.8 Polymeric NPs -- 9.10.9 Carbonaceous NPs -- 9.10.9.1 Carbon nanotubes -- 9.10.9.2 Graphene -- 9.11 Future scope and conclusion -- Acknowledgments -- References -- Chapter 10: Use of nanostructured materials in hard tissue engineering -- 10.1 Introduction -- 10.2 The intricacies of hard tissue architecture and engineering considerations -- 10.2.1 Hard tissue cellular composition -- 10.2.2 Composition of hard tissue extracellular matrix -- 10.2.3 Considerations for intelligence in biomimicry of the extracellular matrix for a rational approach to hard tiss ... -- 10.3 Fabrication approaches for designing nanostructured materials for hard tissue engineering -- 10.4 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for bone ... -- 10.4.1 Electrospun nanofiber-based scaffolds -- 10.4.2 Nanofiber-based scaffolds via thermally induced phase separation -- 10.4.3 Nanocrystalline hydroxyapatite-based scaffolds via combinatory lyophilization approaches -- 10.4.4 Bioactive glass-based nanostructured composites via the sol-gel process -- 10.4.5 Magnetically synthesized carbon nanotube-structured scaffolds via lyophilization -- 10.4.6 Nanodiamond-structured scaffolds via solvent evaporation/solvent casting -- 10.4.7 Magnetic nanoparticle-structured biomimetic scaffolds -- 10.4.8 Nanostructured scaffolds via rapid prototyping technologies -- 10.5 Integration of diverse approaches and biomaterials for the design of nanostructured material scaffolds for denta ... | |
505 | 8 | |a 10.5.1 Nanostructured materials for enamel regeneration -- 10.5.2 Nanostructured materials for pulpodentinal complex regeneration -- 10.5.3 Nanostructured materials for periodontal apparatus regeneration -- 10.5.4 Nanostructured materials for whole tooth regeneration -- 10.6 Conclusions, challenges, and proposed future advances for nanostructured materials in hard tissue engineering -- References -- Chapter 11: Nanobiomaterials in dentistry -- 11.1 Introduction to nanotechnology in dentistry -- 11.1.1 Definition -- 11.1.2 Types -- 11.1.3 Applications of nanotechnology -- 11.2 Nanotechnology in dentistry -- 11.2.1 Research -- 11.2.1.1 Tissue engineering and stem cells -- 11.2.2 Preventive dentistry -- 11.2.2.1 Decontamination, disinfection, and sterilization -- 11.2.2.2 Toothpaste and mouthwash -- 11.2.2.3 Caries prevention -- 11.2.3 Conservative dentistry and prosthodontics -- 11.2.3.1 Introduction to anesthetics -- 11.2.3.2 Bonding materials -- 11.2.3.3 Impression materials -- 11.2.3.4 New composite materials -- 11.2.4 Periodontics, oral surgery and implants -- 11.2.4.1 Early disease diagnosis -- 11.2.4.2 Oral cancer diagnosis and treatment -- 11.2.4.3 Needles in cell surgery -- 11.2.4.4 Tissue regeneration -- 11.2.4.5 Acceleration of the healing process -- 11.2.4.6 Dental implant surfaces -- Bone-implant interface -- 11.2.5 Orthodontics -- 11.2.5.1 Reduction of orthodontic forces -- 11.2.5.2 Bonding properties -- 11.2.5.3 Antibacterial and anticarious properties -- 11.2.5.4 Orthodontic treatment time reduction -- 11.3 Discussion and conclusions -- 11.3.1 Problems and advantages -- References -- Further reading -- Chapter 12: Use of nanostructured materials in medical diagnostics -- 12.1 Zero-dimensional (0-D) nanostructured materials -- 12.1.1 Introduction -- 12.1.2 Synthesis -- 12.1.3 Property. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Nanostructures. | |
650 | 0 | |a Biomedical materials. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Narayan, Roger, |e editor. | |
830 | 0 | |a Woodhead Publishing series in biomaterials. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpNNMBA001/nanobiomaterials-nanostructured-materials?kpromoter=marc |y Full text |