Gallium nitride power devices

"GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be d...

Full description

Saved in:
Bibliographic Details
Other Authors Yu, Hongyu, 1976- (Editor), Duan, Tianli (Editor)
Format Electronic eBook
LanguageEnglish
Published Singapore : Pan Stanford Publishing, 2017.
Subjects
Online AccessFull text
ISBN9781315196626
131519662X
9781351767613
1351767615
9781523114351
1523114355
9781351767606
1351767607
9789814774093
981477409X
9781351767590
1351767593
Physical Description1 online resource (x, 298 pages) : illustrations

Cover

Table of Contents:
  • Cover Page; Halftitle Page; Title Page; Copyright Page; Contents; Preface; 1. The Growth Technology of High-Voltage GaN on Silicon; 1.1 Introduction; 1.2. The Nucleation Layer Growth; 1.3. Stress Engineering; 1.3.1 The LT-Al(Ga)N Interlayer; 1.3.2 The AlGaN Buffer Layer; 1.3.3 Al(Ga)N/GaN SLs; 1.4. Leakage Reduction and Breakdown Voltage Enhancement; 1.4.1 Compensational Doping; 1.4.2 Other Methods; 1.5. Conclusions; 2. The Characteristics of Polarization Effects in GaN Heterostructures; 2.1. Introduction; 2.2. The ab initio Theory in III-V Semiconductors; 2.2.1 Spontaneous Polarization.
  • 2.2.2 Piezoelectric Polarization2.2.3 The Analytical Model of a 2DEG at the AlGaN/GaN Interface; 2.3. Polarization Effects Discussion; 3. GaN Transistor Fabrication Process; 3.1. Device Isolation; 3.1.1 Wet Etch; 3.1.2 Dry Etch; 3.1.3 Implantation Isolation; 3.2. Ohmic Contacts; 3.2.1 The Ti/Al/X/Au Metal Scheme; 3.2.2 CMOS-Compatible Ohmic Contacts; 3.3. Gate Fabrication; 3.3.1 Schottky Gate; 3.3.2 Metal-Insulator-Semiconductor Gate; 3.4. Surface Passivation; 3.5. Field Plates; 4. Conventional AlGaN/GaN Heterojunction Field-Effect Transistors; 4.1. Introduction.
  • 4.2. Polarization and Generation of a 2DEG4.2.1 Polarization; 4.2.2 Generation of a 2DEG; 4.3. GaN HEMT Operation Principle; 4.4. Breakdown for an AlGaN/GaN HEMT; 4.4.1 Gate Electric Field Plate; 4.4.2 Source Electric Field Plate; 4.4.3 Air Bridge Field Plate; 5. Original Demonstration of Depletion-Mode and Enhancement-Mode AlGaN/GaN Heterojunction Field-Effect Transistors; 5.1. Introduction; 5.2. Development of E-Mode AlGaN/GaN HFETs; 5.2.1 E-Mode HFET with a P-Type Cap Layer; 5.2.2 E-Mode HFET with a Recessed-Barrier Layer; 5.2.3 E-Mode HFET with a Double-Barrier Layer.
  • 5.2.4 Metal-Insulator-Semiconductor HFET5.2.5 N-Polar GaN-Based E-Mode HFETs; 5.2.6 E-Mode HEMTs by Fluoride-Based Plasma Treatment; 5.2.7 GaN-Based MOSFETs and AlGaN/GaN MOS-HFETs; 5.2.8 Other Types of E-Mode HFETs; 5.3. Charge Control Models; 5.3.1 CCM in a Heterojunction with a Single Barrier; 5.3.2 CCM in a Heterojunction with Double Barriers; 5.3.3 CCM in a Heterojunction with Multibarriers; 5.4. Reliability of the Threshold Voltage; 5.4.1 Traps Exist in III-N Barrier Layers; 5.4.2 Fixed Charges Exist at the Dielectric/III-N Heterointerface or in the Dielectric.
  • 5.4.3 Dynamic Recovery of the Threshold Voltage Shift by Trapping Speed5.4.4 Lattice-Mismatch-Induced Reduction of Strain or Stress; 6. Surface Passivation and GaN MIS-HEMTs; 6.1. Introduction; 6.2. Surface Passivation; 6.3. Metal-Insulator-Semiconductor High-Electron-Mobility Transistors; 6.3.1 Characteristics of Various Gate Dielectrics; 6.3.2 Atomic Layer Deposition of Al2O3; 6.3.3 Characterization of the Interface Traps by Traditional C-V Measurement; 6.3.4 Other Approaches to Measure the the Interface Trap Density; 6.3.4.1 Hysteresis method; 6.3.4.2 Subthreshold swing method.