Gallium nitride power devices

"GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be d...

Full description

Saved in:
Bibliographic Details
Other Authors: Yu, Hongyu, 1976- (Editor), Duan, Tianli, (Editor)
Format: eBook
Language: English
Published: Singapore : Pan Stanford Publishing, 2017.
Subjects:
ISBN: 9781315196626
131519662X
9781351767613
1351767615
9781523114351
1523114355
9781351767606
1351767607
9789814774093
981477409X
9781351767590
1351767593
Physical Description: 1 online resource (x, 298 pages) : illustrations

Cover

Table of contents

LEADER 06850cam a2200577Mi 4500
001 kn-ocn994496892
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 170718s2017 si a ob 001 0 eng d
040 |a CRCPR  |b eng  |e rda  |e pn  |c CRCPR  |d YDX  |d EBLCP  |d N$T  |d OCLCO  |d UIU  |d OCLCF  |d VLB  |d OTZ  |d UAB  |d ERL  |d STF  |d CAUOI  |d KNOVL  |d OCLCQ  |d CEF  |d UPM  |d U3W  |d WYU  |d TYFRS  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UKMGB  |d OCLCQ  |d K6U  |d VHC  |d OCLCO  |d OCL  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781315196626  |q (electronic bk.) 
020 |a 131519662X  |q (electronic bk.) 
020 |a 9781351767613  |q (electronic bk.) 
020 |a 1351767615  |q (electronic bk.) 
020 |a 9781523114351  |q (electronic bk.) 
020 |a 1523114355  |q (electronic bk.) 
020 |z 9781351767606 
020 |z 1351767607 
020 |z 9789814774093 
020 |z 981477409X 
020 |z 9781351767590 
020 |z 1351767593 
024 7 |a 10.1201/9781315196626  |2 doi 
035 |a (OCoLC)994496892  |z (OCoLC)993596594  |z (OCoLC)993772097  |z (OCoLC)1000430225  |z (OCoLC)1006792316  |z (OCoLC)1015203817  |z (OCoLC)1029498750  |z (OCoLC)1031054126  |z (OCoLC)1044512931  |z (OCoLC)1056571975  |z (OCoLC)1202482346  |z (OCoLC)1303442544 
245 0 0 |a Gallium nitride power devices /  |c edited by Hongyu Yu, Tianli Duan. 
264 1 |a Singapore :  |b Pan Stanford Publishing,  |c 2017. 
300 |a 1 online resource (x, 298 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a "GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China."--Provided by publisher. 
505 0 |a Cover Page; Halftitle Page; Title Page; Copyright Page; Contents; Preface; 1. The Growth Technology of High-Voltage GaN on Silicon; 1.1 Introduction; 1.2. The Nucleation Layer Growth; 1.3. Stress Engineering; 1.3.1 The LT-Al(Ga)N Interlayer; 1.3.2 The AlGaN Buffer Layer; 1.3.3 Al(Ga)N/GaN SLs; 1.4. Leakage Reduction and Breakdown Voltage Enhancement; 1.4.1 Compensational Doping; 1.4.2 Other Methods; 1.5. Conclusions; 2. The Characteristics of Polarization Effects in GaN Heterostructures; 2.1. Introduction; 2.2. The ab initio Theory in III-V Semiconductors; 2.2.1 Spontaneous Polarization. 
505 8 |a 2.2.2 Piezoelectric Polarization2.2.3 The Analytical Model of a 2DEG at the AlGaN/GaN Interface; 2.3. Polarization Effects Discussion; 3. GaN Transistor Fabrication Process; 3.1. Device Isolation; 3.1.1 Wet Etch; 3.1.2 Dry Etch; 3.1.3 Implantation Isolation; 3.2. Ohmic Contacts; 3.2.1 The Ti/Al/X/Au Metal Scheme; 3.2.2 CMOS-Compatible Ohmic Contacts; 3.3. Gate Fabrication; 3.3.1 Schottky Gate; 3.3.2 Metal-Insulator-Semiconductor Gate; 3.4. Surface Passivation; 3.5. Field Plates; 4. Conventional AlGaN/GaN Heterojunction Field-Effect Transistors; 4.1. Introduction. 
505 8 |a 4.2. Polarization and Generation of a 2DEG4.2.1 Polarization; 4.2.2 Generation of a 2DEG; 4.3. GaN HEMT Operation Principle; 4.4. Breakdown for an AlGaN/GaN HEMT; 4.4.1 Gate Electric Field Plate; 4.4.2 Source Electric Field Plate; 4.4.3 Air Bridge Field Plate; 5. Original Demonstration of Depletion-Mode and Enhancement-Mode AlGaN/GaN Heterojunction Field-Effect Transistors; 5.1. Introduction; 5.2. Development of E-Mode AlGaN/GaN HFETs; 5.2.1 E-Mode HFET with a P-Type Cap Layer; 5.2.2 E-Mode HFET with a Recessed-Barrier Layer; 5.2.3 E-Mode HFET with a Double-Barrier Layer. 
505 8 |a 5.2.4 Metal-Insulator-Semiconductor HFET5.2.5 N-Polar GaN-Based E-Mode HFETs; 5.2.6 E-Mode HEMTs by Fluoride-Based Plasma Treatment; 5.2.7 GaN-Based MOSFETs and AlGaN/GaN MOS-HFETs; 5.2.8 Other Types of E-Mode HFETs; 5.3. Charge Control Models; 5.3.1 CCM in a Heterojunction with a Single Barrier; 5.3.2 CCM in a Heterojunction with Double Barriers; 5.3.3 CCM in a Heterojunction with Multibarriers; 5.4. Reliability of the Threshold Voltage; 5.4.1 Traps Exist in III-N Barrier Layers; 5.4.2 Fixed Charges Exist at the Dielectric/III-N Heterointerface or in the Dielectric. 
505 8 |a 5.4.3 Dynamic Recovery of the Threshold Voltage Shift by Trapping Speed5.4.4 Lattice-Mismatch-Induced Reduction of Strain or Stress; 6. Surface Passivation and GaN MIS-HEMTs; 6.1. Introduction; 6.2. Surface Passivation; 6.3. Metal-Insulator-Semiconductor High-Electron-Mobility Transistors; 6.3.1 Characteristics of Various Gate Dielectrics; 6.3.2 Atomic Layer Deposition of Al2O3; 6.3.3 Characterization of the Interface Traps by Traditional C-V Measurement; 6.3.4 Other Approaches to Measure the the Interface Trap Density; 6.3.4.1 Hysteresis method; 6.3.4.2 Subthreshold swing method. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Power electronics. 
650 0 |a Gallium nitride  |x Electric properties. 
650 0 |a Semiconductors. 
650 0 |a Gallium nitride. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Yu, Hongyu,  |d 1976-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjtC7Y96TFjH4P8f8Mmq73 
700 1 |a Duan, Tianli,  |e editor. 
776 0 8 |i Print version:  |z 9789814774093 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpGNPD0003/gallium-nitride-power?kpromoter=marc  |y Full text