Hydrogen production technologies
Saved in:
Other Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Beverly, MA : Hoboken, NJ :
Scrivener Publishing ; John Wiley & Sons,
2017.
|
Series: | Advances in hydrogen production and storage
|
Subjects: | |
ISBN: | 9781119283652 1119283655 9781119283669 1119283663 9781119283645 9781119283676 1119283671 9781523115037 1523115033 1119283647 |
Physical Description: | 1 online resource |
LEADER | 11580cam a2200541 i 4500 | ||
---|---|---|---|
001 | kn-ocn974035692 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 170227s2017 mau ob 001 0 eng | ||
040 | |a DLC |b eng |e rda |c DLC |d N$T |d DG1 |d YDX |d IDEBK |d EBLCP |d MERUC |d COO |d UPM |d OTZ |d DEBBG |d KNOVL |d OCLCF |d STF |d LOA |d CUY |d KSU |d ZCU |d ICG |d CNNOR |d K6U |d CUS |d U3W |d CEF |d CNCEN |d ERL |d LVT |d S8J |d TKN |d D6H |d UAB |d YOU |d DKC |d AU@ |d ERF |d UKMGB |d DLC |d OCLCO |d SDF |d ELBRO |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
020 | |a 9781119283652 |q (pdf) | ||
020 | |a 1119283655 | ||
020 | |a 9781119283669 |q (epub) | ||
020 | |a 1119283663 | ||
020 | |z 9781119283645 |q (hardcover) | ||
020 | |a 9781119283676 |q (electronic bk.) | ||
020 | |a 1119283671 |q (electronic bk.) | ||
020 | |a 9781523115037 |q (electronic bk.) | ||
020 | |a 1523115033 |q (electronic bk.) | ||
020 | |z 1119283647 | ||
035 | |a (OCoLC)974035692 | ||
042 | |a pcc | ||
245 | 0 | 0 | |a Hydrogen production technologies / |c [edited by] Mehmet Sankir and Nurdan Demirci Sankir. |
264 | 1 | |a Beverly, MA : |b Scrivener Publishing ; |a Hoboken, NJ : |b John Wiley & Sons, |c 2017. | |
300 | |a 1 online resource | ||
336 | |a text |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in hydrogen production and storage | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Catalytic and Electrochemical Hydrogen Production -- 1 Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling -- 1.1 Introduction -- 1.2 Catalyst Development for the Steam Reforming Process -- 1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM) -- 1.2.2 Catalyst Development for the Steam Reforming of Ethanol (SRE) -- 1.2.2.1 Co-Based Catalysts for SRE -- 1.2.2.2 Ni-Based Catalysts for SRE -- 1.2.2.3 Bimetallic-Based Catalysts for SRE -- 1.2.3 Catalyst Development for the Steam Reforming of Glycerol (SRG) -- 1.3 Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons -- 1.3.1 Surface Reaction Mechanism for SRM -- 1.3.2 Surface Reaction Mechanism for SRE -- 1.3.3 Surface Reaction Mechanism for SRG -- 1.4 Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons -- References -- 2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations -- 2.1 Introduction -- 2.2 Ammonia Decomposition for Hydrogen Production -- 2.2.1 Ammonia as a Hydrogen Carrier -- 2.2.2 Thermodynamics of Ammonia Decomposition -- 2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition -- 2.2.3.1 Effect of Ammonia Concentration -- 2.2.3.2 Effect of Hydrogen Concentration -- 2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition -- 2.2.4.1 Microreactors for Ammonia Decomposition -- 2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments -- 2.3.1 Microchannel Reactor Design -- 2.3.2 Reactor Operation and Performance -- 2.3.2.1 Microchannel Reactor Operation -- 2.3.2.2 Performance and Operational Considerations -- 2.3.2.3 Performance Comparison with Other Ammonia Microreactors. | |
505 | 8 | |a 2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors -- 2.4.1 Model Validation -- 2.4.2 Velocity, Temperature and Concentration Distributions -- 2.4.3 Evaluation of Mass Transport Limitations -- 2.4.4 Model Limitations: Towards Multiscale Simulations -- 2.5 Summary -- Acknowledgments -- References -- 3 Hydrogen Production with Membrane Systems -- 3.1 Introduction -- 3.2 Pd-Based Membranes -- 3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes -- 3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes -- 3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production -- 3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane -- 3.3.2 Metallic Supported Pd-Based Membrane Reactor -- 3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming -- 3.4.1 Comparison of Membrane Reactors to Emergent Technologies -- 3.4.1.1 Methods and Assumptions -- 3.4.1.2 Comparison -- 3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Catalytic Hydrogen Production from Bioethanol -- 4.1 Introduction -- 4.2 Production Technology Overview -- 4.2.1 Fermentative Hydrogen Production -- 4.2.2 Photocatalytic Hydrogen Production -- 4.2.3 Aqueous Phase Reforming -- 4.2.4 CO2 Dry Reforming -- 4.2.5 Plasma Reforming -- 4.2.6 Partial Oxidation -- 4.2.7 Steam Reforming -- 4.3 Catalyst Overview -- 4.4 Catalyst Optimization Strategies -- 4.5 Reaction Mechanism and Kinetic Studies -- 4.6 Computational Approaches -- 4.7 Economic Considerations -- 4.8 Future Development Directions -- Acknowledgment -- References -- 5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst -- 5.1 Introduction. | |
505 | 8 | |a 5.2 Transition Metal Nanoparticles in Catalysis -- 5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles -- 5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane -- 5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane -- 5.6 Conclusion -- References -- 6 Hydrogen Production by Water Electrolysis -- 6.1 Historical Aspects of Water Electrolysis -- 6.2 Fundamentals of Electrolysis -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics and Efficiencies -- 6.3 Modern Status of Electrolysis -- 6.3.1 Water Electrolysis Technologies -- 6.3.2 Alkaline Water Electrolysis -- 6.3.3 PEM Water Electrolysis -- 6.3.4 High Temperature Water Electrolysis -- 6.4 Perspectives of Hydrogen Production by Electrolysis -- Acknowledgment -- References -- 7 Electrochemical Hydrogen Production from SO2 and Water in a SDE Electrolyzer -- 7.1 Introduction -- 7.2 Membrane Characterization -- 7.2.1 Weight Change -- 7.2.2 Ion Exchange Capacity (IEC) -- 7.2.3 TGA-MS -- 7.3 MEA Characterization -- 7.3.1 MEA Manufacture -- 7.3.2 MEA Characterization -- 7.4 Effect of Anode Impurities -- 7.5 High Temperature SO2 Electrolysis -- 7.6 Conclusion -- References -- Part II Bio Hydrogen Production -- 8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil -- 8.1 Introduction -- 8.2 Biomass Pyrolysis to Produce Bio-Oils -- 8.2.1 Fast Pyrolysis for Bio-Oil Production -- 8.2.2 Pyrolysis Reactions -- 8.2.2.1 Hemicellulose Pyrolysis -- 8.2.2.2 Cellulose Pyrolysis -- 8.2.2.3 Lignin Pyrolysis -- 8.2.2.4 Char Formation Process -- 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Paramenters on Bio-Oil Production -- 8.2.4 Pyrolysis Reactors -- 8.2.4.1 Drop Tube Reactor -- 8.2.4.2 Bubbling Fluid Beds -- 8.2.4.3 Circulating Fluid Beds and Transported Beds -- 8.2.4.4 Rotating Cone -- 8.2.4.5 Ablative Pyrolysis. | |
505 | 8 | |a 8.2.4.6 Vacuum Pyrolysis -- 8.2.4.7 Screw or Auger Reactors -- 8.3 Bio-oil Reforming Processes -- 8.3.1 Bio-oil Reforming Reactions -- 8.3.2 Reforming Catalysts -- 8.3.2.1 Non-Noble Metal-Based Catalysts -- 8.3.2.2 Noble Metal-Based Catalysts -- 8.3.2.3 Conventional Supports -- 8.3.2.4 Non-Conventional Supports -- 8.3.3 Reaction Systems -- 8.3.4 Reforming Process Intensifications -- 8.3.4.1 Sorption Enhanced Steam Reforming -- 8.3.4.2 Chemical Looping -- 8.3.4.3 Sorption Enhanced Chemical Looping -- 8.4 Future Prospects -- References -- 9 Production of a Clean Hydrogen-Rich Gas by the Staged Gasification of Biomass and Plastic Waste -- 9.1 Introduction -- 9.2 Chemistry of Gasification -- 9.3 Tar Cracking and H2 Production -- 9.4 Staged Gasification -- 9.4.1 Two-Stage UOS Gasification Process -- 9.4.2 Three-Stage UOS Gasification Process -- 9.5 Experimental Results and Discussion -- 9.5.1 Effects of Type of Feed Material on H2 Production -- 9.5.2 Effect of Activated Carbon on H2 Production -- 9.5.3 Effects of Other Reaction Parameters on H2 Production -- 9.5.3.1 Temperature -- 9.5.3.2 ER -- 9.5.3.3 Gasifying Agent -- 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers -- 9.5.5 Tar Removal Mechanism over Activated Carbon -- 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments -- 9.5.7 Removal of Other Impurities (NH3, H2S, and HCl) -- 9.6 Conclusions -- References -- 10 Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria -- 10.1 Introduction -- 10.2 Sulphate-Reducing Bacteria for H2 Production -- 10.3 Mathematical Modeling of the SR Fermentation -- 10.4 Bifurcation Analysis -- 10.5 Process Control Strategies -- 10.6 Conclusions -- Acknowledgment -- Nomenclature -- References. | |
505 | 8 | |a 11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications -- 11.1 Introduction -- 11.2 Principles of MEC for Hydrogen Production -- 11.3 Thermodynamics of MEC -- 11.4 Factors Influencing the Performance of MECs -- 11.4.1 Biological Factors -- 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs -- 11.4.1.2 Extracellular Electron Transfer in MECs -- 11.4.1.3 Inoculation and Source of Inoculum -- 11.4.2 Electrode Materials Used in MECs -- 11.4.2.1 Anode Electrode Materials -- 11.4.2.2 Cathode Electrode Materials or Catalysts -- 11.4.3 Membrane or Separator -- 11.4.4 Physical Factors -- 11.4.5 Substrates Used in MECs -- 11.4.6 MEC Operational Factors -- 11.4.6.1 Applied Voltage -- 11.4.6.2 Other Key Operational Factors -- 11.5 Current Application of MECs -- 11.5.1 Hydrogen Production and Wastewater Treatment -- 11.5.1.1 Treatment of DWW Using MECs -- 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW -- 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine -- 11.5.3 MECs for Valuable Products Synthesis -- 11.5.3.1 Methane (CH4) -- 11.5.3.2 Acetate -- 11.5.3.3 Hydrogen Peroxide (H2O2) -- 11.5.3.4 Ethanol (C2H5OH) -- 11.5.3.5 Formic Acid (HCOOH) -- 11.6 Conclusions and Prospective Application of MECs -- Acknowledgments -- References -- 12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power -- 12.1 Introduction -- 12.2 Algae Potential and Characteristics -- 12.2.1 Algae Potential -- 12.2.2 Types of Algae -- 12.2.3 Compositions of Algae -- 12.3 Energy-Efficient Energy Harvesting Technologies -- 12.4 Pretreatment (Drying) -- 12.5 Conversion of Algae to Hydrogen-Rich Gases -- 12.5.1 SCWG for Algae -- 12.5.1.1 Integrated System with SCWG -- 12.5.1.2 Analysis of the Integrated System. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Hydrogen as fuel |x Technological innovations. | |
650 | 0 | |a Hydrogen |x Biotechnology. | |
650 | 0 | |a Hydrogen industry |x Technological innovations. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Sankir, Mehmet, |e editor. | |
700 | 1 | |a Demirci Sankir, Nurdan, |e editor. | |
776 | 0 | 8 | |i Print version: |t Hydrogen production technologies |d Beverly, MA : Scrivener Publishing ; Hoboken, NJ : John Wiley & Sons, 2017 |z 9781119283645 |w (DLC) 2017001107 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpHPT00001/hydrogen-production-technologies?kpromoter=marc |y Full text |