Handbook of silicon based MEMS materials and technologies
The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains...
Saved in:
| Other Authors | |
|---|---|
| Format | Electronic eBook |
| Language | English |
| Published |
London, UK :
William Andrew is an imprint of Elsevier,
2015.
|
| Edition | Second edition. |
| Series | Micro & nano technologies.
|
| Subjects | |
| Online Access | Full text |
| ISBN | 9780323312233 0323312233 0323299652 9780323299657 |
| Physical Description | 1 online resource : illustrations |
Cover
Table of Contents:
- Front Cover
- Handbook of Silicon Based MEMS Materials and Technologies
- Copyright Page
- Contents
- List of Contributors
- Preface to the Second Edition
- Overview: Impact of Silicon MEMS-40Years After
- 1 Introduction
- 2 Towards Mass Volumes of Mems Devices
- 2.1 Early Visions
- 2.2 Inkjet Printer Nozzles Create the Industry
- 2.3 Automotive Applications Drive the Reliability and the Quality
- 2.4 Leaps Towards a Generic Manufacturing Platform
- 3 Towards Every Pocket
- 3.1 New Trends
- 3.2 Consumer Products
- 3.2.1 From Wristwatch to Wearable Electronics
- 3.2.2 Cameras, Displays and Projectors
- 3.2.3 Gaming and Virtual Reality
- 3.3 Medical Applications of MEMS Devices
- 4 Mobile Phones, Smart Phones, and Tablets
- 4.1 RF MEMS
- 4.2 Sensors and Actuators
- 4.3 Silicon Microphone
- 4.4 Modular Sensor Architectures
- 5 Ubiquitous Sensing, Computing and Communication
- 5.1 Merged Physical and Digital Worlds
- 5.2 Wireless Sensing and Sensor Networks
- 5.3 Mobile Device as a Sensor
- 6 Future of Mems Technologies
- 6.1 Is Silicon Enough?
- 6.2 Platform for Nanoscience and Nanotechnologies
- 7 Conclusions
- Acknowledgments
- References
- I. Silicon as MEMS Material
- 1 Properties of Silicon
- 1.1 Properties of Silicon
- 1.1.1 Crystallography of Silicon
- 1.1.1.1 Miller Index (hkl) System
- 1.1.1.2 Stereographic Projection
- 1.1.2 Defects in Silicon Lattice
- 1.1.3 Mechanical Properties of Silicon
- 1.1.4 Electrical Properties
- 1.1.4.1 Introduction-Dopants and Impurities in Silicon
- 1.1.4.2 Piezoresistive Effect in Silicon
- 1.1.4.2.1 General Piezoresistive Effect
- 1.1.4.2.2 Strain
- 1.1.4.2.3 Stress in Anisotropic Materials
- 1.1.4.2.4 Strain Effect on Resistivity
- 1.1.4.2.5 Linearity
- 1.1.4.2.6 Effect of Temperature and Doping
- 1.1.4.2.7 Example of a Piezoresistive Sensor Design.
- 1.1.4.2.8 Surface Effects
- References
- 2 Czochralski Growth of Silicon Crystals
- 2.1 The CZ Crystal-Growing Furnace
- 2.1.1 Crucible
- 2.1.2 HZ Materials
- 2.1.3 HZ Structure
- 2.1.4 Gas Flow
- 2.2 Stages of Growth Process
- 2.2.1 Melting
- 2.2.2 Neck
- 2.2.3 Crown
- 2.2.4 Body
- 2.2.5 Tail
- 2.2.6 Shut-Off
- 2.3 Selected Issues of Crystal Growth
- 2.3.1 Diameter Control
- 2.3.2 Doping
- 2.3.3 HZ Lifetime
- 2.4 Improved Thermal and Gas Flow Designs
- 2.5 Heat Transfer
- 2.6 Melt Convection
- 2.6.1 Free Convection
- 2.6.2 Crucible Rotation
- 2.6.3 Crystal Rotation
- 2.6.4 Marangoni Convection and Gas Shear
- 2.7 Magnetic Fields
- 2.7.1 Cusp Field
- 2.7.2 Transverse Field
- 2.7.3 Time-Dependent Fields
- 2.8 Hot Recharging and Continuous Feed
- 2.8.1 Hot Recharging
- 2.8.2 Charge Topping
- 2.8.3 Crucible Modifications
- 2.8.4 Continuous CZ Growth
- 2.9 Heavily n-Type Doped Silicon and Constitutional Supercooling
- 2.9.1 Constitutional Supercooling
- 2.9.2 Melting Point Depression
- 2.9.3 Origin of Dopant Gradient in the Melt
- 2.9.4 Path to Lower Resistivity
- 2.10 Growth of Large Diameter Crystals
- 2.10.1 Neck Growth for Large Crystals
- 2.10.2 Neck Extension
- 2.10.3 Additional Stresses on Neck
- 2.10.4 Crucible Wall Temperature
- 2.10.5 Double Layered Crucible Structure
- 2.10.6 Crucible Deformations
- 2.10.7 Intentional Devitrification
- 2.10.8 Transverse or Cusp Field for Very Large Crystals
- 2.10.9 Boosting Crystal Weight
- 2.10.10 Seed Chuck
- 2.10.11 Additional Challenges
- References
- Further Reading
- 3 Properties of Silicon Crystals
- 3.1 Dopants and Impurities
- 3.2 Typical Impurity Concentrations
- 3.3 Concentration of Dopants and Impurities in Axial Direction
- 3.4 Resistivity
- 3.5 Radial Variation of Impurities and Resistivity
- 3.6 Thermal Donors.
- 3.7 Defects in Silicon Crystals
- 3.8 Control of Vacancies, Interstitials, and the OISF Ring
- 3.9 Oxygen Precipitation
- 3.9.1 Oxygen Precipitation and Its Quality Effects
- 3.9.2 Dependence of Precipitation on Oxygen Level and Annealing Process
- 3.9.3 Bulk Microdefects
- 3.9.4 Oxygen Precipitation in Highly-doped Wafers
- 3.9.5 Effect of Precipitation on Lifetime and OISFs
- 3.10 Conclusions
- Acknowledgments
- References
- 4 Silicon Wafers: Preparation and Properties
- 4.1 Silicon Wafer Manufacturing Process
- 4.1.1 Ingot Cutting and Shaping
- 4.1.2 Wafering
- 4.1.2.1 ID Cutting
- 4.1.2.2 Wire Cutting
- 4.1.3 Wafer Marking
- 4.1.4 Edge Grinding
- 4.1.5 Lapping/Grinding
- 4.1.6 Chemical Etching
- 4.1.6.1 Donor Killing
- 4.1.7 Polishing
- 4.1.8 Clean Room Operations
- 4.2 Standard Measurements of Polished Wafers
- 4.2.1 Oxygen and Carbon Concentration
- 4.2.2 Metal Concentration Measurements
- 4.2.3 Resistivity
- 4.2.4 Wafer Geometry
- 4.2.5 Particles
- 4.2.6 Other Measurements
- 4.3 Sample Specifications of MEMS Wafers
- 4.4 Standards of Silicon Wafers
- References
- 5 Epi Wafers: Preparation and Properties
- 5.1 Silicon Epitaxy for MEMS
- 5.2 Silicon Epitaxy-The Basics
- 5.2.1 Surface Preparation
- 5.2.2 Silicon Precursors and Deposition Temperature
- 5.2.3 Choice of Doping Species
- 5.2.4 Choosing an Operating Pressure
- 5.3 The Epi-Poly Process
- 5.4 Etch Stop Layers
- 5.4.1 Heavily Boron Doped Epitaxial Etch Stop Layers
- 5.4.2 Pseudomorphic Epitaxial SiGe Etch Stop Layers
- 5.5 Epi on SOI Substrates
- 5.6 Selective Epitaxy and Epitaxial Layer Overgrowth
- 5.7 Considerations for Chemical Mechanical Polishing
- 5.8 Metrology
- 5.8.1 Measurement of Si Epi Layer Thickness
- 5.8.2 Measurement of Epi Layer Resistivity
- 5.8.3 Measurement of Ge in Si and SiGe Epi Layer Thickness.
- 5.8.4 Defectivity Measurements
- 5.8.5 Stress Measurements
- 5.9 Commercially Available Epitaxy Systems
- 5.9.1 Single Wafer Systems
- 5.9.2 Batch Systems
- 5.10 Summary
- References
- 6 Thin Films on Silicon
- 6.1 Thin Films on Silicon: Silicon Dioxide
- 6.1.1 Introduction
- 6.1.2 Growth Methods of Silicon Dioxide
- 6.1.2.1 Thermal Oxidation
- 6.1.2.1.1 Thermal Oxidation Processes
- 6.1.2.1.2 Consumption of Si During Oxidation
- 6.1.2.1.3 Dopant Effects
- 6.1.2.1.4 Chlorine Effects
- 6.1.2.1.5 Pressure Effects-HIPOX
- 6.1.2.1.6 Oxidation of Polysilicon
- 6.1.2.1.7 Stress in Silicon Dioxide
- 6.1.2.1.8 Oxidation-Induced Defects in Silicon
- 6.1.2.2 CVD Oxide Growth Methods
- 6.1.2.2.1 CVD Oxides
- 6.1.2.3 Multidimensional Effects
- 6.1.3 Structure and Properties of Silicon Dioxides
- 6.1.4 Processing of Silicon Dioxides
- 6.1.4.1 Cleaning
- 6.1.4.2 Etching
- References
- 6.2 Thin Films on Silicon: Silicon Nitride
- 6.2.1 Introduction
- 6.2.2 Growth of Silicon Nitride
- 6.2.2.1 Low Pressure Chemical Vapor Deposition
- 6.2.2.2 Plasma Enhanced Chemical Vapor Deposition
- 6.2.2.3 Other Methods
- 6.2.3 Structure and Properties of Silicon Nitride
- 6.2.3.1 Stoichiometry
- 6.2.3.2 Stress in Silicon Nitride
- 6.2.3.2.1 Low Stress Silicon Nitride
- 6.2.4 Processing of Silicon Nitride
- 6.2.4.1 Etching
- 6.2.4.1.1 Wet Etching
- 6.2.4.1.2 Dry Etching
- 6.2.4.2 Etch Mask and Etch Stop
- 6.2.4.3 Local Oxidation
- References
- 6.3 Thin Films on Silicon: Poly-SiGe for MEMS-Above-CMOS Applications
- 6.3.1 Introduction
- 6.3.2 Material Properties of Poly-SiGe
- 6.3.3 Poly-SiGe MEMS Manufacturing
- 6.3.3.1 Poly-SiGe Deposition Technology
- 6.3.3.2 Standard Manufacturing Process of a Poly-SiGe MEMS
- 6.3.4 SiGe MEMS Demonstrators
- 6.3.4.1 Pressure Sensors
- 6.3.4.2 Capacitive Micromachined Ultrasound Transducer.
- 6.3.4.3 Timing Devices
- 6.3.5 Conclusions and Future Poly-SiGe Research
- References
- 6.4 Thin Films on Silicon: ALD
- 6.4.1 Introduction
- 6.4.2 Operation Principles of ALD
- 6.4.3 ALD Processes and Materials
- 6.4.4 Characteristics of ALD Processes and Films
- 6.4.5 ALD Reactors
- 6.4.6 Summary
- References
- Further Reading
- 6.5 Piezoelectric Thin Film Materials for MEMS
- 6.5.1 Introduction
- 6.5.2 Short Introduction to Piezoelectric Theory and Important Thin Film Constants
- 6.5.3 AlN
- 6.5.3.1 Material Properties
- 6.5.3.2 Doped AlN
- 6.5.3.3 Deposition Methods
- 6.5.3.4 Process Integration and Application Areas
- 6.5.4 PZT
- 6.5.4.1 Material Composition
- 6.5.4.2 Choice of Electrode and Seeding
- 6.5.4.3 Deposition Methods
- 6.5.4.3.1 RF-Sputtering
- 6.5.4.3.2 Chemical Solution Deposition
- 6.5.4.3.3 Pulsed Laser Deposition
- 6.5.4.4 Process Integration
- 6.5.4.5 PiezoMEMS Application Areas
- 6.5.5 Other (Future?) Piezoelectric Materials for MEMS
- References
- 6.6 Metallic Glass Thin Films
- 6.6.1 Introduction
- 6.6.1.1 Lithography Issues
- 6.6.1.2 Materials Related Issues
- 6.6.2 Glassy/Amorphous Metals
- 6.6.3 Properties of Metallic Glasses Useful for MEMS
- 6.6.3.1 Superplastic Deformation of Metallic Glasses
- 6.6.3.2 Micro/Nano-Formability of Glassy Metals
- 6.6.4 Applications of Bulk Metallic Glasses in MEMS
- 6.6.5 Metallic Glass Thin Films-Pathway to Integrated MEMS
- 6.6.5.1 Deposition of Metallic Glass Thin Films
- 6.6.5.2 Compatibility with Other Materials
- 6.6.5.3 Effect of Nitrogen and Oxygen Poisoning
- 6.6.5.4 Mechanical Properties
- 6.6.5.5 Chemical Inertness
- 6.6.5.6 Tailorable Magnetic Properties
- 6.6.5.7 Biocompatibility
- 6.6.5.8 Micro/Nano-Fabrication Ability
- 6.6.5.9 3D Micro-Forming
- 6.6.6 Application of Metallic Glass Thin Films
- 6.6.6.1 Hydrogen Sensor.