Handbook of silicon based MEMS materials and technologies

The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains...

Full description

Saved in:
Bibliographic Details
Other Authors Tilli, Markku (Editor)
Format Electronic eBook
LanguageEnglish
Published London, UK : William Andrew is an imprint of Elsevier, 2015.
EditionSecond edition.
SeriesMicro & nano technologies.
Subjects
Online AccessFull text
ISBN9780323312233
0323312233
0323299652
9780323299657
Physical Description1 online resource : illustrations

Cover

Table of Contents:
  • Front Cover
  • Handbook of Silicon Based MEMS Materials and Technologies
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface to the Second Edition
  • Overview: Impact of Silicon MEMS-40Years After
  • 1 Introduction
  • 2 Towards Mass Volumes of Mems Devices
  • 2.1 Early Visions
  • 2.2 Inkjet Printer Nozzles Create the Industry
  • 2.3 Automotive Applications Drive the Reliability and the Quality
  • 2.4 Leaps Towards a Generic Manufacturing Platform
  • 3 Towards Every Pocket
  • 3.1 New Trends
  • 3.2 Consumer Products
  • 3.2.1 From Wristwatch to Wearable Electronics
  • 3.2.2 Cameras, Displays and Projectors
  • 3.2.3 Gaming and Virtual Reality
  • 3.3 Medical Applications of MEMS Devices
  • 4 Mobile Phones, Smart Phones, and Tablets
  • 4.1 RF MEMS
  • 4.2 Sensors and Actuators
  • 4.3 Silicon Microphone
  • 4.4 Modular Sensor Architectures
  • 5 Ubiquitous Sensing, Computing and Communication
  • 5.1 Merged Physical and Digital Worlds
  • 5.2 Wireless Sensing and Sensor Networks
  • 5.3 Mobile Device as a Sensor
  • 6 Future of Mems Technologies
  • 6.1 Is Silicon Enough?
  • 6.2 Platform for Nanoscience and Nanotechnologies
  • 7 Conclusions
  • Acknowledgments
  • References
  • I. Silicon as MEMS Material
  • 1 Properties of Silicon
  • 1.1 Properties of Silicon
  • 1.1.1 Crystallography of Silicon
  • 1.1.1.1 Miller Index (hkl) System
  • 1.1.1.2 Stereographic Projection
  • 1.1.2 Defects in Silicon Lattice
  • 1.1.3 Mechanical Properties of Silicon
  • 1.1.4 Electrical Properties
  • 1.1.4.1 Introduction-Dopants and Impurities in Silicon
  • 1.1.4.2 Piezoresistive Effect in Silicon
  • 1.1.4.2.1 General Piezoresistive Effect
  • 1.1.4.2.2 Strain
  • 1.1.4.2.3 Stress in Anisotropic Materials
  • 1.1.4.2.4 Strain Effect on Resistivity
  • 1.1.4.2.5 Linearity
  • 1.1.4.2.6 Effect of Temperature and Doping
  • 1.1.4.2.7 Example of a Piezoresistive Sensor Design.
  • 1.1.4.2.8 Surface Effects
  • References
  • 2 Czochralski Growth of Silicon Crystals
  • 2.1 The CZ Crystal-Growing Furnace
  • 2.1.1 Crucible
  • 2.1.2 HZ Materials
  • 2.1.3 HZ Structure
  • 2.1.4 Gas Flow
  • 2.2 Stages of Growth Process
  • 2.2.1 Melting
  • 2.2.2 Neck
  • 2.2.3 Crown
  • 2.2.4 Body
  • 2.2.5 Tail
  • 2.2.6 Shut-Off
  • 2.3 Selected Issues of Crystal Growth
  • 2.3.1 Diameter Control
  • 2.3.2 Doping
  • 2.3.3 HZ Lifetime
  • 2.4 Improved Thermal and Gas Flow Designs
  • 2.5 Heat Transfer
  • 2.6 Melt Convection
  • 2.6.1 Free Convection
  • 2.6.2 Crucible Rotation
  • 2.6.3 Crystal Rotation
  • 2.6.4 Marangoni Convection and Gas Shear
  • 2.7 Magnetic Fields
  • 2.7.1 Cusp Field
  • 2.7.2 Transverse Field
  • 2.7.3 Time-Dependent Fields
  • 2.8 Hot Recharging and Continuous Feed
  • 2.8.1 Hot Recharging
  • 2.8.2 Charge Topping
  • 2.8.3 Crucible Modifications
  • 2.8.4 Continuous CZ Growth
  • 2.9 Heavily n-Type Doped Silicon and Constitutional Supercooling
  • 2.9.1 Constitutional Supercooling
  • 2.9.2 Melting Point Depression
  • 2.9.3 Origin of Dopant Gradient in the Melt
  • 2.9.4 Path to Lower Resistivity
  • 2.10 Growth of Large Diameter Crystals
  • 2.10.1 Neck Growth for Large Crystals
  • 2.10.2 Neck Extension
  • 2.10.3 Additional Stresses on Neck
  • 2.10.4 Crucible Wall Temperature
  • 2.10.5 Double Layered Crucible Structure
  • 2.10.6 Crucible Deformations
  • 2.10.7 Intentional Devitrification
  • 2.10.8 Transverse or Cusp Field for Very Large Crystals
  • 2.10.9 Boosting Crystal Weight
  • 2.10.10 Seed Chuck
  • 2.10.11 Additional Challenges
  • References
  • Further Reading
  • 3 Properties of Silicon Crystals
  • 3.1 Dopants and Impurities
  • 3.2 Typical Impurity Concentrations
  • 3.3 Concentration of Dopants and Impurities in Axial Direction
  • 3.4 Resistivity
  • 3.5 Radial Variation of Impurities and Resistivity
  • 3.6 Thermal Donors.
  • 3.7 Defects in Silicon Crystals
  • 3.8 Control of Vacancies, Interstitials, and the OISF Ring
  • 3.9 Oxygen Precipitation
  • 3.9.1 Oxygen Precipitation and Its Quality Effects
  • 3.9.2 Dependence of Precipitation on Oxygen Level and Annealing Process
  • 3.9.3 Bulk Microdefects
  • 3.9.4 Oxygen Precipitation in Highly-doped Wafers
  • 3.9.5 Effect of Precipitation on Lifetime and OISFs
  • 3.10 Conclusions
  • Acknowledgments
  • References
  • 4 Silicon Wafers: Preparation and Properties
  • 4.1 Silicon Wafer Manufacturing Process
  • 4.1.1 Ingot Cutting and Shaping
  • 4.1.2 Wafering
  • 4.1.2.1 ID Cutting
  • 4.1.2.2 Wire Cutting
  • 4.1.3 Wafer Marking
  • 4.1.4 Edge Grinding
  • 4.1.5 Lapping/Grinding
  • 4.1.6 Chemical Etching
  • 4.1.6.1 Donor Killing
  • 4.1.7 Polishing
  • 4.1.8 Clean Room Operations
  • 4.2 Standard Measurements of Polished Wafers
  • 4.2.1 Oxygen and Carbon Concentration
  • 4.2.2 Metal Concentration Measurements
  • 4.2.3 Resistivity
  • 4.2.4 Wafer Geometry
  • 4.2.5 Particles
  • 4.2.6 Other Measurements
  • 4.3 Sample Specifications of MEMS Wafers
  • 4.4 Standards of Silicon Wafers
  • References
  • 5 Epi Wafers: Preparation and Properties
  • 5.1 Silicon Epitaxy for MEMS
  • 5.2 Silicon Epitaxy-The Basics
  • 5.2.1 Surface Preparation
  • 5.2.2 Silicon Precursors and Deposition Temperature
  • 5.2.3 Choice of Doping Species
  • 5.2.4 Choosing an Operating Pressure
  • 5.3 The Epi-Poly Process
  • 5.4 Etch Stop Layers
  • 5.4.1 Heavily Boron Doped Epitaxial Etch Stop Layers
  • 5.4.2 Pseudomorphic Epitaxial SiGe Etch Stop Layers
  • 5.5 Epi on SOI Substrates
  • 5.6 Selective Epitaxy and Epitaxial Layer Overgrowth
  • 5.7 Considerations for Chemical Mechanical Polishing
  • 5.8 Metrology
  • 5.8.1 Measurement of Si Epi Layer Thickness
  • 5.8.2 Measurement of Epi Layer Resistivity
  • 5.8.3 Measurement of Ge in Si and SiGe Epi Layer Thickness.
  • 5.8.4 Defectivity Measurements
  • 5.8.5 Stress Measurements
  • 5.9 Commercially Available Epitaxy Systems
  • 5.9.1 Single Wafer Systems
  • 5.9.2 Batch Systems
  • 5.10 Summary
  • References
  • 6 Thin Films on Silicon
  • 6.1 Thin Films on Silicon: Silicon Dioxide
  • 6.1.1 Introduction
  • 6.1.2 Growth Methods of Silicon Dioxide
  • 6.1.2.1 Thermal Oxidation
  • 6.1.2.1.1 Thermal Oxidation Processes
  • 6.1.2.1.2 Consumption of Si During Oxidation
  • 6.1.2.1.3 Dopant Effects
  • 6.1.2.1.4 Chlorine Effects
  • 6.1.2.1.5 Pressure Effects-HIPOX
  • 6.1.2.1.6 Oxidation of Polysilicon
  • 6.1.2.1.7 Stress in Silicon Dioxide
  • 6.1.2.1.8 Oxidation-Induced Defects in Silicon
  • 6.1.2.2 CVD Oxide Growth Methods
  • 6.1.2.2.1 CVD Oxides
  • 6.1.2.3 Multidimensional Effects
  • 6.1.3 Structure and Properties of Silicon Dioxides
  • 6.1.4 Processing of Silicon Dioxides
  • 6.1.4.1 Cleaning
  • 6.1.4.2 Etching
  • References
  • 6.2 Thin Films on Silicon: Silicon Nitride
  • 6.2.1 Introduction
  • 6.2.2 Growth of Silicon Nitride
  • 6.2.2.1 Low Pressure Chemical Vapor Deposition
  • 6.2.2.2 Plasma Enhanced Chemical Vapor Deposition
  • 6.2.2.3 Other Methods
  • 6.2.3 Structure and Properties of Silicon Nitride
  • 6.2.3.1 Stoichiometry
  • 6.2.3.2 Stress in Silicon Nitride
  • 6.2.3.2.1 Low Stress Silicon Nitride
  • 6.2.4 Processing of Silicon Nitride
  • 6.2.4.1 Etching
  • 6.2.4.1.1 Wet Etching
  • 6.2.4.1.2 Dry Etching
  • 6.2.4.2 Etch Mask and Etch Stop
  • 6.2.4.3 Local Oxidation
  • References
  • 6.3 Thin Films on Silicon: Poly-SiGe for MEMS-Above-CMOS Applications
  • 6.3.1 Introduction
  • 6.3.2 Material Properties of Poly-SiGe
  • 6.3.3 Poly-SiGe MEMS Manufacturing
  • 6.3.3.1 Poly-SiGe Deposition Technology
  • 6.3.3.2 Standard Manufacturing Process of a Poly-SiGe MEMS
  • 6.3.4 SiGe MEMS Demonstrators
  • 6.3.4.1 Pressure Sensors
  • 6.3.4.2 Capacitive Micromachined Ultrasound Transducer.
  • 6.3.4.3 Timing Devices
  • 6.3.5 Conclusions and Future Poly-SiGe Research
  • References
  • 6.4 Thin Films on Silicon: ALD
  • 6.4.1 Introduction
  • 6.4.2 Operation Principles of ALD
  • 6.4.3 ALD Processes and Materials
  • 6.4.4 Characteristics of ALD Processes and Films
  • 6.4.5 ALD Reactors
  • 6.4.6 Summary
  • References
  • Further Reading
  • 6.5 Piezoelectric Thin Film Materials for MEMS
  • 6.5.1 Introduction
  • 6.5.2 Short Introduction to Piezoelectric Theory and Important Thin Film Constants
  • 6.5.3 AlN
  • 6.5.3.1 Material Properties
  • 6.5.3.2 Doped AlN
  • 6.5.3.3 Deposition Methods
  • 6.5.3.4 Process Integration and Application Areas
  • 6.5.4 PZT
  • 6.5.4.1 Material Composition
  • 6.5.4.2 Choice of Electrode and Seeding
  • 6.5.4.3 Deposition Methods
  • 6.5.4.3.1 RF-Sputtering
  • 6.5.4.3.2 Chemical Solution Deposition
  • 6.5.4.3.3 Pulsed Laser Deposition
  • 6.5.4.4 Process Integration
  • 6.5.4.5 PiezoMEMS Application Areas
  • 6.5.5 Other (Future?) Piezoelectric Materials for MEMS
  • References
  • 6.6 Metallic Glass Thin Films
  • 6.6.1 Introduction
  • 6.6.1.1 Lithography Issues
  • 6.6.1.2 Materials Related Issues
  • 6.6.2 Glassy/Amorphous Metals
  • 6.6.3 Properties of Metallic Glasses Useful for MEMS
  • 6.6.3.1 Superplastic Deformation of Metallic Glasses
  • 6.6.3.2 Micro/Nano-Formability of Glassy Metals
  • 6.6.4 Applications of Bulk Metallic Glasses in MEMS
  • 6.6.5 Metallic Glass Thin Films-Pathway to Integrated MEMS
  • 6.6.5.1 Deposition of Metallic Glass Thin Films
  • 6.6.5.2 Compatibility with Other Materials
  • 6.6.5.3 Effect of Nitrogen and Oxygen Poisoning
  • 6.6.5.4 Mechanical Properties
  • 6.6.5.5 Chemical Inertness
  • 6.6.5.6 Tailorable Magnetic Properties
  • 6.6.5.7 Biocompatibility
  • 6.6.5.8 Micro/Nano-Fabrication Ability
  • 6.6.5.9 3D Micro-Forming
  • 6.6.6 Application of Metallic Glass Thin Films
  • 6.6.6.1 Hydrogen Sensor.