Introduction to pattern recognition and machine learning
"This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics -- neural networks, suppor...
Saved in:
Main Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
New Jersey :
World Scientific,
[2015]
|
Series: | IISc lecture notes series ;
5. |
Subjects: | |
ISBN: | 9789814335461 9814335460 9781680158588 1680158589 9789814335454 9814335452 |
Physical Description: | 1 online resource |
LEADER | 05672cam a2200493 i 4500 | ||
---|---|---|---|
001 | kn-ocn908447858 | ||
003 | OCoLC | ||
005 | 20240717213016.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 150506s2015 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCO |d YDXCP |d IDEBK |d CUS |d KNOVL |d CDX |d EBLCP |d DEBSZ |d OCLCQ |d STF |d JBG |d BUF |d WYU |d LEAUB |d AU@ |d OCLCQ |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 9789814335461 |q (electronic bk.) | ||
020 | |a 9814335460 |q (electronic bk.) | ||
020 | |a 9781680158588 |q (electronic bk.) | ||
020 | |a 1680158589 |q (electronic bk.) | ||
020 | |z 9789814335454 | ||
020 | |z 9814335452 | ||
035 | |a (OCoLC)908447858 |z (OCoLC)929520288 |z (OCoLC)932327995 |z (OCoLC)1066428199 | ||
100 | 1 | |a Murty, M. Narasimha, |e author. | |
245 | 1 | 0 | |a Introduction to pattern recognition and machine learning / |c M Narasimha Murty, Der V Susheela Devi (Indian Institute of Science, India). |
264 | 1 | |a New Jersey : |b World Scientific, |c [2015] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a IISc lecture notes series, |x 2010-2402 ; |v vol. 5 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Table of Contents; About the Authors; Preface; 1. Introduction; 1. Classifiers: An Introduction; 2. An Introduction to Clustering; 3. Machine Learning; Research Ideas; 2. Types of Data; 1. Features and Patterns; 2. Domain of a Variable; 3. Types of Features; 3.1. Nominal data; 3.1.1. Operations on nominal variables; 3.2. Ordinal data; 3.2.1. Operations possible on ordinal variables; 3.3. Interval-valued variables; 3.3.1. Operations possible on interval-valued variables; 3.4. Ratio variables; 3.5. Spatio-temporal data; 4. Proximity measures; 4.1. Fractional norms; 4.2. Are metrics essential? | |
505 | 8 | |a 4.3. Similarity between vectors4.4. Proximity between spatial patterns; 4.5. Proximity between temporal patterns; 4.6. Mean dissimilarity; 4.7. Peak dissimilarity; 4.8. Correlation coefficient; 4.9. Dynamic Time Warping (DTW) distance; 4.9.1. Lower bounding the DTW distance; Research Ideas; 3. Feature Extraction and Feature Selection; 1. Types of Feature Selection; 2. Mutual Information (MI) for Feature Selection; 3. Chi-square Statistic; 4. Goodman-Kruskal Measure; 5. Laplacian Score; 6. Singular Value Decomposition (SVD); 7. Non-negative Matrix Factorization (NMF). | |
505 | 8 | |a 8. Random Projections (RPs) for Feature Extraction8.1. Advantages of random projections; 9. Locality Sensitive Hashing (LSH); 10. Class Separability; 11. Genetic and Evolutionary Algorithms; 11.1. Hybrid GA for feature selection; 12. Ranking for Feature Selection; 12.1. Feature selection based on an optimization formulation; 12.2. Feature ranking using F-score; 12.3. Feature ranking using linear support vector machine (SVM) weight vector; 12.4. Ensemble feature ranking; 12.4.1. Using threshold-based feature selection techniques; 12.4.2. Evolutionary algorithm. | |
505 | 8 | |a 12.5. Feature ranking using number of label changes13. Feature Selection for Time Series Data; 13.1. Piecewise aggregate approximation; 13.2. Spectral decomposition; 13.3. Wavelet decomposition; 13.4. Singular Value Decomposition (SVD); 13.5. Common principal component loading based variable subset selection (CLeVer); Research Ideas; 4. Bayesian Learning; 1. Document Classification; 2. Naive Bayes Classifier; 3. Frequency-Based Estimation of Probabilities; 4. Posterior Probability; 5. Density Estimation; 6. Conjugate Priors; Research Ideas; 5. Classification. | |
505 | 8 | |a 1. Classification Without Learning2. Classification in High-Dimensional Spaces; 2.1. Fractional distance metrics; 2.2. Shrinkage-divergence proximity (SDP); 3. RandomForests; 3.1. Fuzzy random forests; 4. Linear Support Vector Machine (SVM); 4.1. SVM-kNN; 4.2. Adaptation of cutting plane algorithm; 4.3. Nystrom approximated SVM; 5. Logistic Regression; 6. Semi-supervised Classification; 6.1. Using clustering algorithms; 6.2. Using generative models; 6.3. Using low density separation; 6.4. Using graph-based methods; 6.5. Using co-training methods; 6.6. Using self-training methods. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a "This book adopts a detailed and methodological algorithmic approach to explain the concepts of pattern recognition. While the text provides a systematic account of its major topics such as pattern representation and nearest neighbour based classifiers, current topics -- neural networks, support vector machines and decision trees -- attributed to the recent vast progress in this field are also dealt with. Introduction to Pattern Recognition and Machine Learning will equip readers, especially senior computer science undergraduates, with a deeper understanding of the subject matter."-- |c Provided by publisher | ||
590 | |a Knovel |b Knovel (All titles) | ||
650 | 0 | |a Pattern recognition systems. | |
650 | 0 | |a Machine learning. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Devi, V. Susheela, |e author. | |
776 | 0 | 8 | |i Print version: |a Murty, M. Narasimha. |t Introduction to pattern recognition and machine learning |z 9789814335454 |w (DLC) 2014044796 |w (OCoLC)697260699 |
830 | 0 | |a IISc lecture notes series ; |v 5. |x 2010-2402 | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpIPRML003/introduction-to-pattern?kpromoter=marc |y Full text |