Principles of GNSS, inertial, and multisensor integrated navigation systems

This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning...

Full description

Saved in:
Bibliographic Details
Main Author: Groves, Paul D. (Author)
Format: eBook
Language: English
Published: Boston : Artech House, [2013]
Edition: Second edition.
Series: GNSS technology and applications series.
Subjects:
ISBN: 9781608070060
1608070069
9781523117529
1523117524
1608070050
9781608070053
Physical Description: 1 online resource (800 pages) : illustrations

Cover

Table of contents

LEADER 20202cam a2200505 i 4500
001 kn-ocn880437603
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 140305t20132013maua ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d STF  |d OCLCQ  |d N$T  |d YDXCP  |d CAUOI  |d B24X7  |d COO  |d EBLCP  |d DEBSZ  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d K6U  |d DEBBG  |d U3W  |d OCLCF  |d OCLCQ  |d VTS  |d CEF  |d NRAMU  |d CRU  |d ICG  |d VLB  |d KKS  |d MERER  |d INT  |d CUY  |d VT2  |d ERL  |d OCLCQ  |d LVT  |d YOU  |d MTU  |d TKN  |d DKC  |d KKS  |d UWW  |d KNOVL  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d S9I  |d OCLCQ  |d ERF  |d OCLCQ  |d MM9  |d OCACL  |d WAU  |d EYM  |d AJS  |d QGK  |d OCLCO  |d OCLCQ  |d UPM  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB 
020 |a 9781608070060  |q (e-book) 
020 |a 1608070069  |q (e-book) 
020 |a 9781523117529  |q (electronic) 
020 |a 1523117524 
020 |z 1608070050 
020 |z 9781608070053 
035 |a (OCoLC)880437603  |z (OCoLC)875895061  |z (OCoLC)877850549  |z (OCoLC)922907285  |z (OCoLC)961619639  |z (OCoLC)962636005  |z (OCoLC)999649986  |z (OCoLC)1007218329  |z (OCoLC)1060197952  |z (OCoLC)1086960368  |z (OCoLC)1099596467  |z (OCoLC)1105867312  |z (OCoLC)1171704439  |z (OCoLC)1180915471  |z (OCoLC)1194831870  |z (OCoLC)1259188077 
100 1 |a Groves, Paul D.  |q (Paul David),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjyDF4fdKhxpcJth8gP3V3 
245 1 0 |a Principles of GNSS, inertial, and multisensor integrated navigation systems /  |c Paul D. Groves. 
250 |a Second edition. 
264 1 |a Boston :  |b Artech House,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (800 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a GNSS technology and application series 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning. 
505 0 |a Machine generated contents note: ch. 1 Introduction -- 1.1. Fundamental Concepts -- 1.2. Dead Reckoning -- 1.3. Position Fixing -- 1.3.1. Position-Fixing Methods -- 1.3.2. Signal-Based Positioning -- 1.3.3. Environmental Feature Matching -- 1.4. The Navigation System -- 1.4.1. Requirements -- 1.4.2. Context -- 1.4.3. Integration -- 1.4.4. Aiding -- 1.4.5. Assistance and Cooperation -- 1.4.6. Fault Detection -- 1.5. Overview of the Book -- References -- ch. 2 Coordinate Frames, Kinematics, and the Earth -- 2.1. Coordinate Frames -- 2.1.1. Earth-Centered Inertial Frame -- 2.1.2. Earth-Centered Earth-Fixed Frame -- 2.1.3. Local Navigation Frame -- 2.1.4. Local Tangent-Plane Frame -- 2.1.5. Body Frame -- 2.1.6. Other Frames -- 2.2. Attitude, Rotation, and Resolving Axes Transformations -- 2.2.1. Euler Attitude -- 2.2.2. Coordinate Transformation Matrix -- 2.2.3. Quaternion Attitude -- 2.2.4. Rotation Vector -- 2.3. Kinematics -- 2.3.1. Angular Rate -- 2.3.2. Cartesian Position -- 2.3.3. Velocity -- 2.3.4. Acceleration -- 2.3.5. Motion with Respect to a Rotating Reference Frame -- 2.4. Earth Surface and Gravity Models -- 2.4.1. The Ellipsoid Model of the Earth's Surface -- 2.4.2. Curvilinear Position -- 2.4.3. Position Conversion -- 2.4.4. The Geoid, Orthometric Height, and Earth Tides -- 2.4.5. Projected Coordinates -- 2.4.6. Earth Rotation -- 2.4.7. Specific Force, Gravitation, and Gravity -- 2.5. Frame Transformations -- 2.5.1. Inertial and Earth Frames -- 2.5.2. Earth and Local Navigation Frames -- 2.5.3. Inertial and Local Navigation Frames -- 2.5.4. Earth and Local Tangent-Plane Frames -- 2.5.5. Transposition of Navigation Solutions -- References -- ch. 3 Kalman Filter-Based Estimation -- 3.1. Introduction -- 3.1.1. Elements of the Kalman Filter -- 3.1.2. Steps of the Kalman Filter -- 3.1.3. Kalman Filter Applications -- 3.2. Algorithms and Models -- 3.2.1. Definitions -- 3.2.2. Kalman Filter Algorithm -- 3.2.3. System Model -- 3.2.4. Measurement Model -- 3.2.5. Kalman Filter Behavior and State Observability -- 3.2.6. Closed-Loop Kalman Filter -- 3.2.7. Sequential Measurement Update -- 3.3. Implementation Issues -- 3.3.1. Tuning and Stability -- 3.3.2. Algorithm Design -- 3.3.3. Numerical Issues -- 3.3.4. Time Synchronization -- 3.3.5. Kalman Filter Design Process -- 3.4. Extensions to the Kalman Filter -- 3.4.1. Extended and Linearized Kalman Filter -- 3.4.2. Unscented Kalman Filter -- 3.4.3. Time-Correlated Noise -- 3.4.4. Adaptive Kalman Filter -- 3.4.5. Multiple-Hypothesis Filtering -- 3.4.6. Kalman Smoothing -- 3.5. The Particle Filter -- References -- ch. 4 Inertial Sensors -- 4.1. Accelerometers -- 4.1.1. Pendulous Accelerometers -- 4.1.2. Vibrating-Beam Accelerometers -- 4.2. Gyroscopes -- 4.2.1. Optical Gyroscopes -- 4.2.2. Vibratory Gyroscopes -- 4.3. Inertial Measurement Units -- 4.4. Error Characteristics -- 4.4.1. Biases -- 4.4.2. Scale Factor and Cross-Coupling Errors -- 4.4.3. Random Noise -- 4.4.4. Further Error Sources -- 4.4.5. Vibration-Induced Errors -- 4.4.6. Error Models -- References -- ch. 5 Inertial Navigation -- 5.1. Introduction to Inertial Navigation -- 5.2. Inertial-Frame Navigation Equations -- 5.2.1. Attitude Update -- 5.2.2. Specific-Force Frame Transformation -- 5.2.3. Velocity Update -- 5.2.4. Position Update -- 5.3. Earth-Frame Navigation Equations -- 5.3.1. Attitude Update -- 5.3.2. Specific-Force Frame Transformation -- 5.3.3. Velocity Update -- 5.3.4. Position Update -- 5.4. Local-Navigation-Frame Navigation Equations -- 5.4.1. Attitude Update -- 5.4.2. Specific-Force Frame Transformation -- 5.4.3. Velocity Update -- 5.4.4. Position Update -- 5.4.5. Wander-Azimuth Implementation -- 5.5. Navigation Equations Optimization -- 5.5.1. Precision Attitude Update -- 5.5.2. Precision Specific-Force Frame Transformation -- 5.5.3. Precision Velocity and Position Updates -- 5.5.4. Effects of Sensor Sampling Interval and Vibration -- 5.5.5. Design Tradeoffs -- 5.6. Initialization and Alignment -- 5.6.1. Position and Velocity Initialization -- 5.6.2. Attitude Initialization -- 5.6.3. Fine Alignment -- 5.7. INS Error Propagation -- 5.7.1. Short-Term Straight-Line Error Propagation -- 5.7.2. Medium- and Long-Term Error Propagation -- 5.7.3. Maneuver-Dependent Errors -- 5.8. Indexed IMU -- 5.9. Partial IMU -- References -- ch. 6 Dead Reckoning, Attitude, and Height Measurement -- 6.1. Attitude Measurement -- 6.1.1. Magnetic Heading -- 6.1.2. Marine Gyrocompass -- 6.1.3. Strapdown Yaw-Axis Gyro -- 6.1.4. Heading from Trajectory -- 6.1.5. Integrated Heading Determination -- 6.1.6. Accelerometer Leveling and Tilt Sensors -- 6.1.7. Horizon Sensing -- 6.1.8. Attitude and Heading Reference System -- 6.2. Height and Depth Measurement -- 6.2.1. Barometric Altimeter -- 6.2.2. Depth Pressure Sensor -- 6.2.3. Radar Altimeter -- 6.3. Odometry -- 6.3.1. Linear Odometry -- 6.3.2. Differential Odometry -- 6.3.3. Integrated Odometry and Partial IMU -- 6.4. Pedestrian Dead Reckoning Using Step Detection -- 6.5. Doppler Radar and Sonar -- 6.6. Other Dead-Reckoning Techniques -- 6.6.1. Correlation-Based Velocity Measurement -- 6.6.2. Air Data -- 6.6.3. Ship's Speed Log -- References -- ch. 7 Principles of Radio Positioning -- 7.1. Radio Positioning Configurations and Methods -- 7.1.1. Self-Positioning and Remote Positioning -- 7.1.2. Relative Positioning -- 7.1.3. Proximity -- 7.1.4. Ranging -- 7.1.5. Angular Positioning -- 7.1.6. Pattern Matching -- 7.1.7. Doppler Positioning -- 7.2. Positioning Signals -- 7.2.1. Modulation Types -- 7.2.2. Radio Spectrum -- 7.3. User Equipment -- 7.3.1. Architecture -- 7.3.2. Signal Timing Measurement -- 7.3.3. Position Determination from Ranging -- 7.4. Propagation, Error Sources, and Positioning Accuracy -- 7.4.1. Ionosphere, Troposphere, and Surface Propagation Effects -- 7.4.2. Attenuation, Reflection, Multipath, and Diffraction -- 7.4.3. Resolution, Noise, and Tracking Errors -- 7.4.4. Transmitter Location and Timing Errors -- 7.4.5. Effect of Signal Geometry -- References -- ch. 8 GNSS: Fundamentals, Signals, and Satellites -- 8.1. Fundamentals of Satellite Navigation -- 8.1.1. GNSS Architecture -- 8.1.2. Signals and Range Measurement -- 8.1.3. Positioning -- 8.1.4. Error Sources and Performance Limitations -- 8.2. The Systems -- 8.2.1. Global Positioning System -- 8.2.2. GLONASS -- 8.2.3. Galileo -- 8.2.4. Beidou -- 8.2.5. Regional Systems -- 8.2.6. Augmentation Systems -- 8.2.7. System Compatibility -- 8.3. GNSS Signals -- 8.3.1. Signal Types -- 8.3.2. Global Positioning System -- 8.3.3. GLONASS -- 8.3.4. Galileo -- 8.3.5. Beidou -- 8.3.6. Regional Systems -- 8.3.7. Augmentation Systems -- 8.4. Navigation Data Messages -- 8.4.1. GPS -- 8.4.2. GLONASS -- 8.4.3. Galileo -- 8.4.4. SBAS -- 8.4.5. Time Base Synchronization -- 8.5. Satellite Orbits and Geometry -- 8.5.1. Satellite Orbits -- 8.5.2. Satellite Position and Velocity -- 8.5.3. Range, Range Rate, and Line of Sight -- 8.5.4. Elevation and Azimuth -- References -- ch. 9 GNSS: User Equipment Processing and Errors -- 9.1. Receiver Hardware and Antenna -- 9.1.1. Antennas -- 9.1.2. Reference Oscillator -- 9.1.3. Receiver Front End -- 9.1.4. Baseband Signal Processor -- 9.2. Ranging Processor -- 9.2.1. Acquisition -- 9.2.2. Code Tracking -- 9.2.3. Carrier Tracking -- 9.2.4. Tracking Lock Detection -- 9.2.5. Navigation-Message Demodulation -- 9.2.6. Carrier-Power-to-Noise-Density Measurement -- 9.2.7. Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements -- 9.3. Range Error Sources -- 9.3.1. Ephemeris Prediction and Satellite Clock Errors -- 9.3.2. Ionosphere and Troposphere Propagation Errors -- 9.3.3. Tracking Errors -- 9.3.4. Multipath, Nonline-of-Sight, and Diffraction -- 9.4. Navigation Processor -- 9.4.1. Single-Epoch Navigation Solution -- 9.4.2. Filtered Navigation Solution -- 9.4.3. Signal Geometry and Navigation Solution Accuracy -- 9.4.4. Position Error Budget -- References -- ch. 
505 0 |a 10 GNSS: Advanced Techniques -- 10.1. Differential GNSS -- 10.1.1. Spatial and Temporal Correlation of GNSS Errors -- 10.1.2. Local and Regional Area DGNSS -- 10.1.3. Wide Area DGNSS and Precise Point Positioning -- 10.1.4. Relative GNSS -- 10.2. Real-Time Kinematic Carrier-Phase Positioning and Attitude Determination -- 10.2.1. Principles of Accumulated Delta Range Positioning -- 10.2.2. Single-Epoch Navigation Solution Using Double-Differenced ADR -- 10.2.3. Geometry-Based Integer Ambiguity Resolution -- 10.2.4. Multifrequency Integer Ambiguity Resolution -- 10.2.5. GNSS Attitude Determination -- 10.3. Interference Rejection and Weak Signal Processing -- 10.3.1. Sources of Interference, Jamming, and Attenuation -- 10.3.2. Antenna Systems -- 10.3.3. Receiver Front-End Filtering -- 10.3.4. Extended Range Tracking -- 10.3.5. Receiver Sensitivity -- 10.3.6.Combined Acquisition and Tracking -- 10.3.7. Vector Tracking -- 10.4. Mitigation of Multipath Interference and Nonline-of-Sight Reception -- 10.4.1. Antenna-Based Techniques -- 10.4.2. Receiver-Based Techniques -- 10.4.3. Navigation-Processor-Based Techniques -- 10.5. Aiding, Assistance, and Orbit Prediction -- 10.5.1. Acquisition and Velocity Aiding -- 10.5.2. Assisted GNSS -- 10.5.3. Orbit Prediction -- 10.6. Shadow Matching -- References -- ch. 11 Long- and Medium-Range Radio Navigation -- 11.1. Aircraft Navigation Systems -- 11.1.1. Distance Measuring Equipment -- 11.1.2. Range-Bearing Systems -- 11.1.3. Nondirectional Beacons -- 11.1.4. JTIDS/MIDS Relative Navigation -- 11.1.5. Future Air Navigation Systems -- 11.2. Enhanced Loran -- 11.2.1. Signals -- 11.2.2. User Equipment and Positioning -- 11.2.3. Error Sources -- 11.2.4. Differential Loran -- 11.3. Phone Positioning -- 11.3.1. Proximity and Pattern Matching -- 11.3.2. Ranging -- 11.4. Other Systems -- 11.4.1. Iridium Positioning -- 11.4.2. Marine Radio Beacons -- 11.4.3. AM Radio Broadcasts -- 11.4.4. FM Radio Broadcasts -- 11.4.5. Digital Television and Radio -- 11.4.6. Generic Radio Positioning -- References -- ch. 12 Short-Range Positioning -- 12.1. Pseudolites -- 12.1.1. In-Band Pseudolites -- 12.1.2. Locata and Terralite XPS -- 12.1.3. Indoor Messaging System -- 12.2. Ultrawideband -- 12.2.1. Modulation Schemes -- 12.2.2. Signal Timing -- 12.2.3. Positioning 
505 0 |a Note continued: 12.3. Short-Range Communications Systems -- 12.3.1. Wireless Local Area Networks (Wi-Fi) -- 12.3.2. Wireless Personal Area Networks -- 12.3.3. Radio Frequency Identification -- 12.3.4. Bluetooth Low Energy -- 12.3.5. Dedicated Short-Range Communication -- 12.4. Underwater Acoustic Positioning -- 12.5. Other Positioning Technologies -- 12.5.1. Radio -- 12.5.2. Ultrasound -- 12.5.3. Infrared -- 12.5.4. Optical -- 12.5.5. Magnetic -- References -- ch. 13 Environmental Feature Matching -- 13.1. Map Matching -- 13.1.1. Digital Road Maps -- 13.1.2. Road Link Identification -- 13.1.3. Road Positioning -- 13.1.4. Rail Map Matching -- 13.1.5. Pedestrian Map Matching -- 13.2. Terrain-Referenced Navigation -- 13.2.1. Sequential Processing -- 13.2.2. Batch Processing -- 13.2.3. Performance -- 13.2.4. Laser TRN -- 13.2.5. Sonar TRN -- 13.2.6. Barometric TRN -- 13.2.7. Terrain Database Height Aiding -- 13.3. Image-Based Navigation -- 13.3.1. Imaging Sensors -- 13.3.2. Image Feature Comparison -- 13.3.3. Position Fixing Using Individual Features -- 13.3.4. Position Fixing by Whole-Image Matching -- 13.3.5. Visual Odometry -- 13.3.6. Feature Tracking -- 13.3.7. Stellar Navigation -- 13.4. Other Feature-Matching Techniques -- 13.4.1. Gravity Gradiometry -- 13.4.2. Magnetic Field Variation -- 13.4.3. Celestial X-Ray Sources -- References -- ch. 14 INS/GNSS Integration -- 14.1. Integration Architectures -- 14.1.1. Correction of the Inertial Navigation Solution -- 14.1.2. Loosely Coupled Integration -- 14.1.3. Tightly Coupled Integration -- 14.1.4. GNSS Aiding -- 14.1.5. Deeply Coupled Integration -- 14.2. System Model and State Selection -- 14.2.1. State Selection and Observability -- 14.2.2. INS State Propagation in an Inertial Frame -- 14.2.3. INS State Propagation in an Earth Frame -- 14.2.4. INS State Propagation Resolved in a Local Navigation Frame -- 14.2.5. Additional IMU Error States -- 14.2.6. INS System Noise -- 14.2.7. GNSS State Propagation and System Noise -- 14.2.8. State Initialization -- 14.3. Measurement Models -- 14.3.1. Loosely Coupled Integration -- 14.3.2. Tightly Coupled Integration -- 14.3.3. Deeply Coupled Integration -- 14.3.4. Estimation of Attitude and Instrument Errors -- 14.4. Advanced INS/GNSS Integration -- 14.4.1. Differential GNSS -- 14.4.2. Carrier-Phase Positioning -- 14.4.3. GNSS Attitude -- 14.4.4. Large Heading Errors -- 14.4.5. Advanced IMU Error Modeling -- 14.4.6. Smoothing -- References -- ch. 15 INS Alignment, Zero Updates, and Motion Constraints -- 15.1. Transfer Alignment -- 15.1.1. Conventional Measurement Matching -- 15.1.2. Rapid Transfer Alignment -- 15.1.3. Reference Navigation System -- 15.2. Quasi-Stationary Alignment -- 15.2.1. Coarse Alignment -- 15.2.2. Fine Alignment -- 15.3. Zero Updates -- 15.3.1. Stationary-Condition Detection -- 15.3.2. Zero Velocity Update -- 15.3.3. Zero Angular Rate Update -- 15.4. Motion Constraints -- 15.4.1. Land Vehicle Constraints -- 15.4.2. Pedestrian Constraints -- 15.4.3. Ship and Boat Constraint -- References -- ch. 16 Multisensor Integrated Navigation -- 16.1. Integration Architectures -- 16.1.1. Cascaded Single-Epoch Integration -- 16.1.2. Centralized Single-Epoch Integration -- 16.1.3. Cascaded Filtered Integration -- 16.1.4. Centralized Filtered Integration -- 16.1.5. Federated Filtered Integration -- 16.1.6. Hybrid Integration Architectures -- 16.1.7. Total-State Kalman Filter Employing Prediction -- 16.1.8. Error-State Kalman Filter -- 16.1.9. Primary and Reversionary Moding -- 16.1.10. Context-Adaptive Moding -- 16.2. Dead Reckoning, Attitude, and Height Measurement -- 16.2.1. Attitude -- 16.2.2. Height and Depth -- 16.2.3. Odometry -- 16.2.4. Pedestrian Dead Reckoning Using Step Detection -- 16.2.5. Doppler Radar and Sonar -- 16.2.6. Visual Odometry and Terrain-Referenced Dead Reckoning -- 16.3. Position-Fixing Measurements -- 16.3.1. Position Measurement Integration -- 16.3.2. Ranging Measurement Integration -- 16.3.3. Angular Measurement Integration -- 16.3.4. Line Fix Integration -- 16.3.5. Handling Ambiguous Measurements -- 16.3.6. Feature Tracking and Mapping -- 16.3.7. Aiding of Position-Fixing Systems -- References -- ch. 17 Fault Detection, Integrity Monitoring, and Testing -- 17.1. Failure Modes -- 17.1.1. Inertial Navigation -- 17.1.2. Dead Reckoning, Attitude, and Height Measurement -- 17.1.3. GNSS -- 17.1.4. Terrestrial Radio Navigation -- 17.1.5. Environmental Feature Matching and Tracking -- 17.1.6. Integration Algorithm -- 17.1.7. Context -- 17.2. Range Checks -- 17.2.1. Sensor Outputs -- 17.2.2. Navigation Solution -- 17.2.3. Kalman Filter Estimates -- 17.3. Kalman Filter Measurement Innovations -- 17.3.1. Innovation Filtering -- 17.3.2. Innovation Sequence Monitoring -- 17.3.3. Remedying Biased State Estimates -- 17.4. Direct Consistency Checks -- 17.4.1. Measurement Consistency Checks and RAIM -- 17.4.2. Parallel Solutions -- 17.5. Infrastructure-Based Integrity Monitoring -- 17.6. Solution Protection and Performance Requirements -- 17.7. Testing -- 17.7.1. Field Trials -- 17.7.2. Recorded Data Testing -- 17.7.3. Laboratory Testing -- 17.7.4. Software Simulation -- References -- ch. 18 Applications and Future Trends -- 18.1. Design and Development -- 18.2. Aviation -- 18.3. Guided Weapons and Small UAVs -- 18.4. Land Vehicle Applications -- 18.5. Rail Navigation -- 18.6. Marine Navigation -- 18.7. Underwater Navigation -- 18.8. Spacecraft Navigation -- 18.9. Pedestrian Navigation -- 18.10. Other Applications -- 18.11. Future Trends -- References. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Global Positioning System. 
650 0 |a Artificial satellites in navigation. 
650 0 |a Inertial navigation systems. 
650 0 |a Navigation  |x Technological innovations. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Groves, Paul D.  |t Principles of GNSS, inertial, and multisensor integrated navigation systems.  |d Boston : Artech House, [2013]  |h xix, 776 pages ; 26 cm.  |k GNSS technology and application series  |z 9781608070053  |w (DLC) 18056171  |w (OCoLC)820530994 
830 0 |a GNSS technology and applications series. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPGNSSIM9/principles-of-gnss?kpromoter=marc  |y Full text