Solid oxide fuel cells : from materials to system modeling

Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming o...

Full description

Saved in:
Bibliographic Details
Other Authors: Ni, Meng, (Editor), Zhao, T. S., (Editor)
Format: eBook
Language: English
Published: Cambridge : Royal soc of chemistry, 2013.
Cambridge, UK : RSC Publishing, [2013]
Series: RSC energy and environment series ; no. 7.
Subjects:
ISBN: 9781849737777
1849737770
9781680158151
1680158155
1849736545
9781849736541
Physical Description: 1 online resource (xiii, 523 pages) : illustrations (black and white, and color)

Cover

Table of contents

LEADER 12839cam a2200565 i 4500
001 kn-ocn872248996
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 140311s2013 enka ob 001 0 eng d
040 |a UKRSC  |b eng  |e rda  |e pn  |c UKRSC  |d OCLCO  |d N$T  |d YDXCP  |d COO  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d KNOVL  |d ZCU  |d IDEBK  |d VT2  |d AGLDB  |d OCLCQ  |d MERER  |d OCLCQ  |d OCLCO  |d REB  |d OCLCQ  |d VTS  |d CEF  |d RRP  |d OCLCQ  |d NLE  |d UKMGB  |d WYU  |d STF  |d U3G  |d M8D  |d UKAHL  |d OCLCQ  |d S9I  |d OCLCQ  |d LUN  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SXB 
020 |a 9781849737777  |q (electronic bk.) 
020 |a 1849737770  |q (electronic bk.) 
020 |a 9781680158151  |q (electronic bk.) 
020 |a 1680158155  |q (electronic bk.) 
020 |z 1849736545 
020 |z 9781849736541 
035 |a (OCoLC)872248996  |z (OCoLC)858096507  |z (OCoLC)865246120  |z (OCoLC)881571697  |z (OCoLC)961851568  |z (OCoLC)988617540  |z (OCoLC)999450481  |z (OCoLC)1002904814  |z (OCoLC)1026456366  |z (OCoLC)1066651424  |z (OCoLC)1204809804 
245 0 0 |a Solid oxide fuel cells :  |b from materials to system modeling /  |c edited by Meng Ni, Hong Kong Polytechnic University, Hung Hom, Kowloon, P.R. China, Tim S. Zhao, the Hong Kong University of Science and Technology, Hong Kong, P.R. China. 
264 1 |a Cambridge :  |b Royal soc of chemistry,  |c 2013. 
264 1 |a Cambridge, UK :  |b RSC Publishing,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xiii, 523 pages) :  |b illustrations (black and white, and color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a RSC energy and environment series,  |x 2044-0774 ;  |v number 7 
504 |a Includes bibliographical references and index. 
505 0 |a Machine generated contents note: ch. 1 Introduction to Stationary Fuel Cells / C. Ozgur Colpan -- 1.1. General Introduction to Fuel Cells -- 1.2. Introduction to Low-Temperature Fuel Cells -- 1.3. Introduction to Solid Oxide Fuel Cells -- 1.3.1. Classification of SOFC Systems -- 1.3.2. Fuel Options for SOFC -- 1.4. Integrated SOFC Systems -- 1.5. Basic SOFC Modelling -- 1.6. Case Study -- 1.6.1. Analysis -- 1.6.2. Results and Discussion -- 1.7. Conclusions -- References -- ch. 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) / Zongping Shao -- 2.1.A General Introduction to Electrolyte of SOFCs -- 2.2. The Requirements of Electrolyte -- 2.3. Classification of Electrolytes -- 2.3.1. Oxygen-ion Conducting Electrolyte -- 2.3.2. Proton-conducting Electrolyte -- 2.3.3. Dual-phase Composite Electrolyte -- 2.4. Future Vision -- References -- ch. 3 Cathode Material Development / Changrong Xia -- 3.1. Introduction -- 3.2. Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs. 
505 0 |a Contents note continued: 3.2.1. Electron Conducting Cathodes -- 3.2.2. Mixed Oxygen Ion-Electron Conducting Cathodes -- 3.2.3. Microstructure Optimized Cathodes -- 3.2.4. Cathode Reaction Mechanisms -- 3.3. Cathodes for Proton-Conducting Electrolyte Based SOFCs -- 3.3.1. Electron-Conducting Cathodes -- 3.3.2. Mixed Oxygen Ion-Electron Conducting Cathodes -- 3.3.3. Mixed Electron-Proton Conducting Cathodes -- 3.3.4. Microstructure Optimized Cathodes -- 3.3.5. Cathode Reaction Mechanisms -- 3.4. Summary and Conclusions -- Acknowledgements -- References -- ch. 4 Anode Material Development / Josephine M. Hill -- 4.1. Required Properties of Anode Materials -- 4.2. Hydrogen Fuel -- 4.3. Methane Fuel -- 4.3.1. Conventional Ni/YSZ Anodes -- 4.3.2. Alternative Anodes -- 4.4. Higher Hydrocarbon Fuels (Propane and Butane) -- 4.5. Fuels from Biomass -- 4.5.1. Biomass-Simulated Gas -- 4.5.2. Biomass -- Actual Gas -- 4.6. Liquid Fuels -- 4.7. Ammonia Fuel -- 4.8. Conclusions -- References. 
505 0 |a Contents note continued: ch. 5 Interconnect Materials for SOFC Stacks / Christopher Johnson -- 5.1. Introduction -- 5.2. Lanthanum Chromites as Interconnect -- 5.2.1. Conductivity -- 5.2.2. Thermal Expansion -- 5.2.3. Gas Tightness, Processing and Chemical Stability -- 5.2.4. Other Ceramic Interconnect -- 5.2.5. Applications -- 5.3. Metallic Alloys as Interconnect -- 5.3.1. Selection of Metallic Materials -- 5.3.2. Problems for Metallic Materials as Interconnect -- 5.3.3. Interconnect Coatings -- 5.3.4. Applications of Metallic Interconnects -- 5.4. Concluding Remarks -- References -- ch. 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration / San Ping Jiang -- 6.1. Introduction -- 6.2. Infiltration Process -- 6.2.1. The Technique -- 6.2.2. Factors Affecting Infiltration Process and Microstructure -- 6.3. Nano-structured Electrodes -- 6.3.1. Performance Promotion Factor -- 6.3.2. Nano-structured Cathodes -- 6.3.3. Nano-structured Anodes. 
505 0 |a Contents note continued: 6.4. Microstructure and Microstructural Stability of Nano-structured Electrodes -- 6.4.1. Microstructure Effect -- 6.4.2. Microstructural Stability of Nano-structured Electrodes -- 6.5. Electrocatalytic Effects of Infiltrated Nanoparticles -- 6.6. Conclusions -- Acknowledgement -- References -- ch. 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes / N.P. Brandon -- 7.1. The Importance of 3D Characterisation and the Limitations of Stereology -- 7.2. Focused Ion Beam Characterisation -- 7.2.1. The FIB-SEM Instrument -- 7.2.2. Application of FIB-SEM Techniques to SOFC Materials -- 7.3. Microstructural Characterisation using X-rays -- 7.3.1.X-ray Microscopy and Tomography -- 7.3.2. Lab X-ray Instruments -- 7.3.3. Synchrotron X-ray Instruments -- 7.3.4.4-Dimensional Tomography -- 7.4. Data Analysis and Image Based Modelling -- 7.4.1. Data Analysis -- 7.4.2. Image Based Modelling -- 7.5. Conclusions -- References. 
505 0 |a Contents note continued: ch. 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode / Nobuhide Kasagi -- 8.1. Introduction -- 8.2. Experimental -- 8.2.1. Button Cell Experiment -- 8.2.2. Microstructure Reconstruction Using FIB-SEM -- 8.3. Numerical Method -- 8.3.1. Quantification of Microstructural Parameters -- 8.3.2. Governing Equations for Polarization Simulation -- 8.3.3.Computational Scheme -- 8.4. Results and Discussions -- 8.5. Conclusions -- Acknowledgements -- References -- ch. 9 Multi-scale Modelling of Solid Oxide Fuel Cells / Wolfgang G. Bessler -- 9.1. Introduction and Motivation -- 9.2. Modelling Methodologies: From the Atomistic to the System Scale -- 9.2.1. Overview -- 9.2.2. Molecular Level: Atomistic Modelling -- 9.2.3. Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics -- 9.2.4. Electrode Level (II): Porous Mass and Charge Transport -- 9.2.5. Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport. 
505 0 |a Contents note continued: 9.2.6. Stack Level: Computational Fluid Dynamics Based Design -- 9.2.7. System Level -- 9.3. Bridging the Gap Between Scales -- 9.3.1. General Aspects -- 9.3.2. Electrochemistry -- 9.3.3. Transport -- 9.3.4. Structure -- 9.4. Multi-scale Models for SOFC System Simulation and Control -- 9.4.1. Pressurized SOFC System for a Hybrid Power Plant -- 9.4.2. Tubular SOFC System for Mobile APU Applications -- 9.5. Conclusions -- Acknowledgements -- References -- ch. 10 Fuel Cells Running on Alternative Fuels / Jing-Li Luo -- 10.1. Introduction -- 10.2. Fuel Cell Reactor Set-up -- 10.3. SOFCs Running on Sourgas -- 10.4. SOFCs Running on C2H6 and C3H8 -- 10.4.1. Development of Electrolyte of PC-SOFCs -- 10.4.2. Development of Anode Materials of PC-SOFCs -- 10.5. SOFCs Running on Syngas Containing H2S -- 10.6. SOFCs Running on Pure H2S -- 10.7. Summary -- Acknowledgements -- References -- ch. 11 Long Term Operating Stability / Harumi Yokokawa -- 11.1. Introduction. 
505 0 |a Contents note continued: 11.2. Durability of Stacks/Systems -- 11.2.1. Determination of Stack Performance -- 11.2.2. Performance Degradation and Materials Deteriorations -- 11.2.3. Impurities and their Poisoning Effects on Electrode Reactivity -- 11.3. Deteriorations of Electrolytes -- 11.3.1. Destabilization of Mn Dissolved YSZ -- 11.3.2. Conductivity Decrease in Ni-dissolved YSZ -- 11.4. Performance Degradations of Cathode and Anodes -- 11.4.1. Cathode Poisoning -- 11.4.2. Sintering of Ni Cermet Anodes -- 11.5. For Future Work -- 11.6. Conclusions -- Acknowledgement -- References -- ch. 12 Application of SOFCs in Combined Heat, Cooling and Power Systems / P. Kazempoor -- 12.1. Introduction -- 12.1.1. Drivers for Interest in Co- and Tri-generation Using Fuel Cells -- 12.1.2. Overview of CHP and CCHP -- 12.2. Application Characteristics & Building Integration -- 12.2.1.Commercial Buildings -- 12.2.2. Residential Applications -- 12.2.3. Building Integration & Operating Strategies. 
505 0 |a Contents note continued: 12.3. Overview of SOFC-CHP/CCHP Systems -- 12.3.1. SOFC System Description for CHP (Co-generation) -- 12.3.2. SOFC System Description for CCHP (Tri-generation) -- 12.4. Modelling Approaches: Cell to System -- 12.4.1. System-level Modelling and Performance Estimation -- 12.4.2. Cell/Stack Modelling for SOFC System Simulation -- 12.4.3. System Optimization Using Techno-economic Model Formulations -- 12.5. Evaluation of SOFC Systems in CCHP Applications -- 12.5.1. Micro-CHP -- 12.5.2. Large-scale CHP and CCHP Applications -- 12.6.Commercial Developments of SOFC-CHP Systems -- 12.6.1.Commercialization Efforts -- 12.6.2. Demonstrations -- 12.7. Market Barriers and Challenges -- 12.7.1. Energy Pricing -- 12.7.2. SOFC Costs -- 12.7.3. Technical Barriers -- 12.7.4. Market Barriers and Environmental Impact -- 12.8. Summary -- References -- ch. 13 Integrated SOFC and Gas Turbine Systems / Massimo Dentice D'Accadia -- 13.1. Introduction -- 13.2. SOFC/GT Prototypes. 
505 0 |a Contents note continued: 13.3. SOFC/GT Layouts Classification -- 13.4. SOFC/GT Pressurized Cycles -- 13.4.1. Internally Reformed SOFC/GT Cycles -- 13.4.2. Anode Recirculation -- 13.4.3. Heat Recovery Steam Generator (HRSG) -- 13.4.4. Externally Reformed SOFC/GT Cycles -- 13.4.5. Hybrid SOFC/GT-Cheng Cycles -- 13.4.6. Hybrid SOFC/Humidified Air Turbine (HAT) -- 13.4.7. Hybrid SOFC/GT-ITSOFC Cycles -- 13.4.8. Hybrid SOFC/GT-Rankine Cycles -- 13.4.9. Hybrid SOFC/GT with Air Recirculation or Exhaust Gas Recirculation (EGR) -- 13.5. SOFC/GT Atmospheric Cycles -- 13.6. SOFC/GT Power Plant: Control Strategies -- 13.7. Hybrid SOFC/GT Systems Fed by Alternative Fuels -- 13.8. IGCC SOFC/GT Power Plants -- References -- ch. 14 Modelling and Control of Solid Oxide Fuel Cell / Bo Huang -- 14.1. Static Identification Model -- 14.1.1. Nonlinear Modelling Based on LS-SVM -- 14.1.2. Nonlinear Modelling Based on GA-RBF -- 14.2. Dynamic Identification Modelling for SOFC -- 14.2.1. ANFIS Identification Modelling. 
505 0 |a Contents note continued: 14.2.2. Hammerstein Identification Modelling -- 14.3. Control Strategies of the SOFC -- 14.3.1. Constant Voltage Control -- 14.3.2. Constant Fuel Utilization Control -- 14.3.3. Simulation -- 14.4. Conclusions. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 8 |a Solid oxide fuel cells (SOFCs) are promising electrochemical power generation devices that can convert chemical energy of a fuel into electricity in an efficient, environmental-friendly, and quiet manner. Due to their high operating temperature, SOFCs feature fuel flexibility as internal reforming of hydrocarbon fuels and ammonia thermal cracking can be realized in SOFC anode. This book first introduces the fundamental principles of SOFCs and compares SOFC technology with conventional heat engines as well as low temperature fuel cells. Then the latest developments in SOFC R & D are reviewed and future directions are discussed. Key issues related to SOFC performance improvement, long-term stability, mathematical modelling, as well as system integration/control are addressed, including material development, infiltration technique for nano-structured electrode fabrication, focused ion beam - scanning electron microscopy (FIB-SEM) technique for microstructure reconstruction, the Lattice Boltzmann Method (LBM) simulation at pore scale, multi-scale modelling, SOFC integration with buildings and other cycles for stationary applications. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Solid oxide fuel cells. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Ni, Meng,  |e editor. 
700 1 |a Zhao, T. S.,  |e editor. 
776 0 8 |i Print version:  |z 1849736545  |z 9781849736541 
830 0 |a RSC energy and environment series ;  |v no. 7. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSOFCFMS2/solid-oxide-fuel?kpromoter=marc  |y Full text