Programming the finite element method

"Provides an updated version of Fortran 2003 (all the Fortran programs and subroutines are listed in full in the text but will also be made available online)"--

Saved in:
Bibliographic Details
Main Authors: Smith, I. M. 1940- (Author), Griffiths, D. V., (Author), Margetts, Lee, (Author)
Format: eBook
Language: English
Published: Chichester, West Sussex, UK : Wiley, 2014.
Edition: Fifth edition.
Subjects:
ISBN: 9781119189237
1119189233
9781118535929
1118535928
9781118535936
1118535936
9781118535943
1118535944
1119973341
9781119973348
9781299831209
1299831206
Physical Description: 1 online resource

Cover

Table of contents

LEADER 22872cam a2200601 i 4500
001 kn-ocn853114018
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 130716s2014 enk ob 001 0 eng
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d IDEBK  |d N$T  |d CDX  |d COO  |d TXA  |d E7B  |d YDXCP  |d DEBSZ  |d OCLCF  |d DG1  |d DEBBG  |d COCUF  |d DG1  |d OCLCQ  |d MOR  |d LIP  |d PIFPO  |d OCLCQ  |d U3W  |d OCLCQ  |d STF  |d CEF  |d NRAMU  |d INT  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d UKAHL  |d VT2  |d UX1  |d OCLCQ  |d OCLCO  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781119189237  |q (electronic bk.) 
020 |a 1119189233  |q (electronic bk.) 
020 |a 9781118535929  |q (ePub) 
020 |a 1118535928  |q (ePub) 
020 |a 9781118535936  |q (Adobe PDF) 
020 |a 1118535936  |q (Adobe PDF) 
020 |a 9781118535943  |q (MobiPocket) 
020 |a 1118535944  |q (MobiPocket) 
020 |a 1119973341 
020 |a 9781119973348 
020 |a 9781299831209 
020 |a 1299831206 
020 |z 9781119973348  |q (hardback) 
035 |a (OCoLC)853114018  |z (OCoLC)859446736  |z (OCoLC)961666989  |z (OCoLC)962583334  |z (OCoLC)1055389215  |z (OCoLC)1065713041  |z (OCoLC)1081295659  |z (OCoLC)1101715913  |z (OCoLC)1148099298 
042 |a pcc 
100 1 |a Smith, I. M.  |q (Ian Moffat),  |d 1940-  |e author. 
245 1 0 |a Programming the finite element method /  |c I M. Smith, University of Manchester, UK, D.V. Griffiths, Colorado School of Mines, USA, L. Margetts, University of Manchester, UK. 
250 |a Fifth edition. 
264 1 |a Chichester, West Sussex, UK :  |b Wiley,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a "Provides an updated version of Fortran 2003 (all the Fortran programs and subroutines are listed in full in the text but will also be made available online)"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
505 0 0 |g Machine generated contents note:  |g 1.  |t Preliminaries: Computer Strategies --  |g 1.1.  |t Introduction --  |g 1.2.  |t Hardware --  |g 1.3.  |t Memory Management --  |g 1.4.  |t Vector Processors --  |g 1.5.  |t Multi-core Processors --  |g 1.6.  |t Co-processors --  |g 1.7.  |t Parallel Processors --  |g 1.8.  |t Applications Software --  |g 1.8.1.  |t Compilers --  |g 1.8.2.  |t Arithmetic --  |g 1.8.3.  |t Conditions --  |g 1.8.4.  |t Loops --  |g 1.9.  |t Array Features --  |g 1.9.1.  |t Dynamic Arrays --  |g 1.9.2.  |t Broadcasting --  |g 1.9.3.  |t Constructors --  |g 1.9.4.  |t Vector Subscripts --  |g 1.9.5.  |t Array Sections --  |g 1.9.6.  |t Whole-array Manipulations --  |g 1.9.7.  |t Intrinsic Procedures for Arrays --  |g 1.9.8.  |t Modules --  |g 1.9.9.  |t Subprogram Libraries --  |g 1.9.10.  |t Structured Programming --  |g 1.10.  |t Third-party Libraries --  |g 1.10.1.  |t BIAS Libraries --  |g 1.10.2.  |t Maths Libraries --  |g 1.10.3.  |t User Subroutines --  |g 1.10.4.  |t MPI Libraries --  |g 1.11.  |t Visualisation --  |g 1.11.1.  |t Starting ParaView --  |g 1.11.2.  |t Display Restrained Nodes --  |g 1.11.3.  |t Display Applied Loads --  |g 1.11.4.  |t Display Deformed Mesh --  |g 1.12.  |t Conclusions --  |t References --  |g 2.  |t Spatial Discretisation by Finite Elements --  |g 2.1.  |t Introduction --  |g 2.2.  |t Rod Element --  |g 2.2.1.  |t Rod Stiffness Matrix --  |g 2.2.2.  |t Rod Mass Element --  |g 2.3.  |t Eigenvalue Equation --  |g 2.4.  |t Beam Element --  |g 2.4.1.  |t Beam Element Stiffness Matrix --  |g 2.4.2.  |t Beam Element Mass Matrix --  |g 2.5.  |t Beam with an Axial Force --  |g 2.6.  |t Beam on an Elastic Foundation --  |g 2.7.  |t General Remarks on the Discretisation Process --  |g 2.8.  |t Alternative Derivation of Element Stiffness --  |g 2.9.  |t Two-dimensional Elements: Plane Stress --  |g 2.10.  |t Energy Approach and Plane Strain --  |g 2.10.1.  |t Thermoelasticity --  |g 2.11.  |t Plane Element Mass Matrix --  |g 2.12.  |t Axisymmetric Stress and Strain --  |g 2.13.  |t Three-dimensional Stress and Strain --  |g 2.14.  |t Plate Bending Element --  |g 2.15.  |t Summary of Element Equations for Solids --  |g 2.16.  |t Flow of Fluids: Navier -- Stokes Equations --  |g 2.17.  |t Simplified Flow Equations --  |g 2.17.1.  |t Steady State --  |g 2.17.2.  |t Transient State --  |g 2.17.3.  |t Convection --  |g 2.18.  |t Further Coupled Equations: Biot Consolidation --  |g 2.19.  |t Conclusions --  |t References --  |g 3.  |t Programming Finite Element Computations --  |g 3.1.  |t Introduction --  |g 3.2.  |t Local Coordinates for Quadrilateral Elements --  |g 3.2.1.  |t Numerical Integration for Quadrilaterals --  |g 3.2.2.  |t Analytical Integration for Quadrilaterals --  |g 3.3.  |t Local Coordinates for Triangular Elements --  |g 3.3.1.  |t Numerical Integration for Triangles --  |g 3.3.2.  |t Analytical Integration for Triangles --  |g 3.4.  |t Multi-Element Assemblies --  |g 3.5.  |t Èlement-by-Element' Techniques --  |g 3.5.1.  |t Conjugate Gradient Method for Linear Equation Systems --  |g 3.5.2.  |t Preconditioning --  |g 3.5.3.  |t Unsymmetric Systems --  |g 3.5.4.  |t Symmetric Non-Positive Definite Equations --  |g 3.5.5.  |t Eigenvalue Systems --  |g 3.6.  |t Incorporation of Boundary Conditions --  |g 3.6.1.  |t Convection Boundary Conditions --  |g 3.7.  |t Programming using Building Blocks --  |g 3.7.1.  |t Black Box Routines --  |g 3.7.2.  |t Special Purpose Routines --  |g 3.7.3.  |t Plane Elastic Analysis using Quadrilateral Elements --  |g 3.7.4.  |t Plane Elastic Analysis using Triangular Elements --  |g 3.7.5.  |t Axisymmetric Strain of Elastic Solids --  |g 3.7.6.  |t Plane Steady Laminar Fluid Flow --  |g 3.7.7.  |t Mass Matrix Formation --  |g 3.7.8.  |t Higher-Order 2D Elements --  |g 3.7.9.  |t Three-Dimensional Elements --  |g 3.7.10.  |t Assembly of Elements --  |g 3.8.  |t Solution of Equilibrium Equations --  |g 3.9.  |t Evaluation of Eigenvalues and Eigenvectors --  |g 3.9.1.  |t Jacobi Algorithm --  |g 3.9.2.  |t Lanczos and Arnoldi Algorithms --  |g 3.10.  |t Solution of First-Order Time-Dependent Problems --  |g 3.11.  |t Solution of Coupled Navier -- Stokes Problems --  |g 3.12.  |t Solution of Coupled Transient Problems --  |g 3.12.1.  |t Absolute Load Version --  |g 3.12.2.  |t Incremental Load Version --  |g 3.13.  |t Solution of Second-Order Time-Dependent Problems --  |g 3.13.1.  |t Modal Superposition --  |g 3.13.2.  |t Newmark or Crank -- Nicolson Method --  |g 3.13.3.  |t Wilson's Method --  |g 3.13.4.  |t Complex Response --  |g 3.13.5.  |t Explicit Methods and Other Storage-Saving Strategies --  |t References --  |g 4.  |t Static Equilibrium of Structures --  |g 4.1.  |t Introduction --  |g Program 4.1  |t One-dimensional analysis of axially loaded elastic rods using 2-node rod elements --  |g Program 4.2  |t Analysis of elastic pin-jointed frames using 2-node rod elements in two or three dimensions --  |g Program 4.3  |t Analysis of elastic beams using 2-node beam elements (elastic foundation optional) --  |g Program 4.4  |t Analysis of elastic rigid-jointed frames using 2-node beam/rod elements in two or three dimensions --  |g Program 4.5  |t Analysis of elastic -- plastic beams or frames using 2-node beam or beam/rod elements in one, two or three dimensions --  |g Program 4.6  |t Stability (buckling) analysis of elastic beams using 2-node beam elements (elastic foundation optional) --  |g Program 4.7  |t Analysis of plates using 4-node rectangular plate elements. Homogeneous material with identical elements. Mesh numbered in x- or y-direction --  |g 4.2.  |t Conclusions --  |g 4.3.  |t Glossary of Variable Names --  |g 4.4.  |t Exercises --  |t References --  |g 5.  |t Static Equilibrium of Linear Elastic Solids --  |g 5.1.  |t Introduction --  |g Program 5.1  |t Plane or axisymmetric strain analysis of a rectangular elastic solid using 3-, 6-, 10- or 15-node right-angled triangles or 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction --  |g Program 5.2  |t Non-axisymmetric analysis of a rectangular axisymmetric elastic solid using 8-node rectangular quadrilaterals. Mesh numbered in r- or z -direction --  |g Program 5.3  |t Three-dimensional analysis of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction --  |g Program 5.4  |t General 2D (plane strain) or 3D analysis of elastic solids. Gravity loading option --  |g Program 5.5  |t Plane or axisymmetric thermoelastic analysis of an elastic solid using 3-, 6-, 10- or 15-node right-angled triangles or 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered in x(r)- or y (z)-direction --  |g Program 5.6  |t Three-dimensional strain of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g Program 5.7  |t Three-dimensional strain of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction. No global stiffness matrix. Diagonally preconditioned conjugate gradient solver. Optimised maths library, ABAQUS UMAT version --  |g 5.2.  |t Glossary of Variable Names --  |g 5.3.  |t Exercises --  |t References --  |g 6.  |t Material Non-linearity --  |g 6.1.  |t Introduction --  |g 6.2.  |t Stress -- strain Behaviour --  |g 6.3.  |t Stress Invariants --  |g 6.4.  |t Failure Criteria --  |g 6.4.1.  |t Von Mises --  |g 6.4.2.  |t Mohr -- Coulomb and Tresca --  |g 6.5.  |t Generation of Body Loads --  |g 6.6.  |t Viscoplasticity --  |g 6.7.  |t Initial Stress --  |g 6.8.  |t Corners on the Failure and Potential Surfaces --  |g Program 6.1  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (von Mises) material using 8-node rectangular quadrilaterals. Flexible smooth footing. Load control. Viscoplastic strain method --  |g Program 6.2  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (von Mises) material using 8-node rectangular quadrilaterals. Flexible smooth footing. Load control. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g Program 6.3  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (Mohr -- Coulomb) material using 8-node rectangular quadrilaterals. Rigid smooth footing. Displacement control. Viscoplastic strain method --  |g Program 6.4  |t Plane-strain slope stability analysis of an elastic -- plastic (Mohr -- Coulomb) material using 8-node rectangular quadrilaterals. Gravity loading. Viscoplastic strain method --  |g Program 6.5  |t Plane-strain earth pressure analysis of an elastic -- plastic (Mohr -- Coulomb) material using 8-node rectangular quadrilaterals. Rigid smooth wall.  
505 0 0 |t Initial stress method --  |g 6.9.  |t Elastoplastic Rate Integration --  |g 6.9.1.  |t Forward Euler Method --  |g 6.9.2.  |t Backward Euler Method --  |g 6.10.  |t Tangent Stiffness Approaches --  |g 6.10.1.  |t Inconsistent Tangent Matrix --  |g 6.10.2.  |t Consistent Tangent Matrix --  |g 6.10.3.  |t Convergence Criterion --  |g Program 6.6  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (von Mises) material using 8-node rectangular quadrilaterals, Flexible smooth footing, Load control. Consistent tangent stiffness. Closest point projection method (CPPM) --  |g Program 6.7  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (von Mises) material using 8-node rectangular quadrilaterals. Flexible smooth footing. Load control. Consistent tangent stiffness. CPPM. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g Program 6.8  |t Plane-strain-bearing capacity analysis of an elastic -- plastic (von Mises) material using 8-node rectangular quadrilaterals. Flexible smooth footing. Load control. Consistent tangent stiffness. Radial return method (RR) with ̀line search' --  |g 6.11.  |t Geotechnical Processes of Embanking and Excavation --  |g 6.11.1.  |t Embanking --  |g Program 6.9  |t Plane-strain construction of an elastic -- plastic (Mohr -- Coulomb) embankment in layers on a foundation using 8-node quadrilaterals. Viscoplastic strain method --  |g 6.11.2.  |t Excavation --  |g Program 6.10  |t Plane-strain construction of an elastic -- plastic (Mohr -- Coulomb) excavation in layers using 8-node quadrilaterals. Viscoplastic strain method --  |g 6.12.  |t Undrained Analysis --  |g Program 6.11  |t Axisymmetric ùndrained' strain of an elastic -- plastic (Mohr -- Coulomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain method. 
505 0 0 |g Note continued:  |g Program 6.12  |t Three-dimensional strain analysis of an elastic -- plastic (Mohr -- Coulomb) slope using 20-node hexahedra. Gravity loading. Viscoplastic strain method --  |g Program 6.13  |t Three-dimensional strain analysis of an elastic -- plastic (Mohr -- Coulomb) slope using 20-node hexahedra. Gravity loading. Viscoplastic strain method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g 6.13.  |t Glossary of Variable Names --  |g 6.14.  |t Exercises --  |t References --  |g 7.  |t Steady State Flow --  |g 7.1.  |t Introduction --  |g Program 7.1  |t One-dimensional analysis of steady seepage using 2-node line elements --  |g Program 7.2  |t Plane or axisymmetric analysis of steady seepage using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z) -direction --  |g Program 7.3  |t Analysis of plane free surface flow using 4-node quadrilaterals. Ànalytical' form of element conductivity matrix --  |g Program 7.4  |t General two- (plane) or three-dimensional analysis of steady seepage --  |g Program 7.5  |t General two- (plane) or three-dimensional analysis of steady seepage. No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g 7.2.  |t Glossary of Variable Names --  |g 7.3.  |t Exercises --  |t References --  |g 8.  |t Transient Problems: First Order (Uncoupled) --  |g 8.1.  |t Introduction --  |g Program 8.1  |t One-dimensional transient (consolidation) analysis using 2-node ̀line' elements. Implicit time integration using the ̀theta' method --  |g Program 8.2  |t One-dimensional transient (consolidation) analysis (settlement and excess pore pressure) using 2-node ̀line' elements. Implicit time integration using the ̀theta' method --  |g Program 8.3  |t One-dimensional consolidation analysis using 2-node ̀line' elements. Explicit time integration. Element by element. Lumped mass --  |g Program 8.4  |t Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the ̀theta' method --  |g Program 8.5  |t Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Implicit time integration using the ̀theta' method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g Program 8.6  |t Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. Explicit time integration using the ̀theta = 0' method --  |g Program 8.7  |t Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction. ̀theta' method using an element-by-element product algorithm --  |g 8.2.  |t Comparison of Programs 8.4, 8.5, 8.6 and 8.7 --  |g Program 8.8  |t General two- (plane) or three-dimensional transient (consolidation) analysis. Implicit time integration using the ̀theta' method --  |g Program 8.9  |t Plane analysis of the diffusion -- convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the ̀theta' method. Self-adjoint transformation --  |g Program 8.10  |t Plane analysis of the diffusion -- convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the ̀theta' method. Untransformed solution --  |g Program 8.11  |t Plane or axisymmetric transient thermal conduction analysis using 4-node rectangular quadrilaterals. Implicit time integration using the ̀theta' method. Option of convection and flux boundary conditions --  |g 8.3.  |t Glossary of Variable Names --  |g 8.4.  |t Exercises --  |t References --  |g 9.  |t Coupled Problems --  |g 9.1.  |t Introduction --  |g Program 9.1  |t Analysis of the plane steady-state Navier -- Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x-direction. Freedoms numbered in the order u -- p -- v --  |g Program 9.2  |t Analysis of the plane steady-state Navier -- Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in x-direction. Freedoms numbered in the order u -- p -- v. Element-by-element solution using BiCGStab(l) with no preconditioning. No global matrix [ect.] --  |g Program 9.3  |t One-dimensional coupled consolidation analysis of a Biot poroelastic solid using 2-node ̀line' elements. Freedoms numbered in the order v -- uw --  |g Program 9.4  |t Plane strain consolidation analysis of a Biot elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in order u -- v -- uw. Incremental load version --  |g Program 9.5  |t Plane strain consolidation analysis of a Biot elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in order u -- v -- uw. Incremental load version. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient [ect.] --  |g Program 9.6  |t Plane strain consolidation analysis of a Biot poroelastic -- plastic (Mohr -- Coulomb) material using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order u -- v -- uw. Viscoplastic strain method --  |g 9.2.  |t Glossary of Variable Names --  |g 9.3.  |t Exercises --  |t References --  |g 10.  |t Eigenvalue Problems --  |g 10.1.  |t Introduction --  |g Program 10.1  |t Eigenvalue analysis of elastic beams using 2-node beam elements, Lumped mass --  |g Program 10.2  |t Eigenvalue analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in y-direction --  |g Program 10.3  |t Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos method. Consistent mass. Mesh numbered in y-direction --  |g Program 10.4  |t Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals with ARPACK. Lumped mass. Element-by-element formulation. Mesh numbered in y-direction --  |g 10.2.  |t Glossary of Variable Names --  |g 10.3.  |t Exercises --  |t References --  |g 11.  |t Forced Vibrations --  |g 11.1.  |t Introduction --  |g Program 11.1  |t Forced vibration analysis of elastic beams using 2-node beam elements. Consistent mass. Newmark time stepping --  |g Program 11.2  |t Forced vibration analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in the y-direction. Modal superposition --  |g Program 11.3  |t Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using the ̀theta' method --  |g Program 11.4  |t Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using Wilson's method --  |g Program 11.5  |t Forced vibration of a rectangular elastic solid in plane strain using 8-node quadrilateral elements numbered in the y-direction. Lumped mass, complex response --  |g Program 11.6  |t Forced vibration analysis of an elastic solid in plane strain using uniform size rectangular 4-node quadrilaterals. Mesh numbered in the y-direction. Lumped or consistent mass. Mixed explicit/implicit time integration --  |g Program 11.7  |t Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using the ̀theta' method. No global matrix assembly. Diagonally preconditioned conjugate gradient solver --  |g Program 11.8  |t Forced vibration analysis of an elastic -- plastic (von Mises) solid in plane strain using rectangular 8-node quadrilateral elements. Lumped mass. Mesh numbered in the y-direction.  
505 0 0 |t Explicit time integration --  |g 11.2.  |t Glossary of Variable Names --  |g 11.3.  |t Exercises --  |t References --  |g 12.  |t Parallel Processing of Finite Element Analyses --  |g 12.1.  |t Introduction --  |g 12.2.  |t Differences between Parallel and Serial Programs --  |g 12.2.1.  |t Parallel Libraries --  |g 12.2.2.  |t Global Variables --  |g 12.2.3.  |t MPI Library Routines --  |g 12.2.4.  |t _pp Appendage --  |g 12.2.5.  |t Simple Test Problems --  |g 12.2.6.  |t Reading and Writing --  |g 12.2.7.  |t Rest Instead of nf --  |g 12.2.8.  |t Gathering and Scattering --  |g 12.2.9.  |t Reindexing --  |g 12.2.10.  |t Domain Composition --  |g 12.2.11.  |t Third-party Mesh-partitioning Tools --  |g 12.2.12.  |t Load Balancing --  |g Program 12.1  |t Three-dimensional analysis of an elastic solid. Compare Program 5.6 --  |g Program 12.2  |t Three-dimensional analysis of an elastoplastic (Mohr -- Coulomb) solid. Compare Program 6.13 --  |g Program 12.3  |t Three-dimensional Laplacian flow. Compare Program 7.5 --  |g Program 12.4  |t Three-dimensional transient heat conduction -- implicit analysis in time. Compare Program 8.5 --  |g Program 12.5  |t Three-dimensional transient flow -- explicit analysis in time. Compare Program 8.6 --  |g Program 12.6  |t Three-dimensional steady-state Navier -- Stokes analysis. Compare Program 9.2 --  |g Program 12.7  |t Three-dimensional analysis of Biot poro elastic solid. Incremental version. Compare Program 9.5 --  |g Program 12.8  |t Eigenvalue analysis of three-dimensional elastic solid. Compare Program 103 --  |g Program 12.9  |t Forced vibration analysis of a three-dimensional elastic solid. Implicit integration in time. Compare Program 11.7 --  |g Program 12.10  |t Forced vibration analysis of three-dimensional elasto plastic solid. Explicit integration in time. Compare Program 11.8 --  |g 12.3.  |t Graphics Processing Units. 
505 0 0 |g Note continued:  |g Program 12.11  |t Three-dimensional strain of an elastic solid using 8-, 14- or 20-node brick hexahedra. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver. GPU version. Compare Program 5.7 --  |g 12.4.  |t Cloud Computing --  |g 12.5.  |t Conclusions --  |g 12.6.  |t Glossary of Variable Names --  |t References. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Finite element method  |x Data processing. 
650 0 |a Engineering  |x Data processing. 
650 0 |a FORTRAN 2003 (Computer program language) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Griffiths, D. V.,  |e author. 
700 1 |a Margetts, Lee,  |e author. 
776 0 8 |i Print version:  |a Smith, I.M. (Ian Moffat), 1940-  |t Programming the finite element method.  |b Fifth edition / Ian M. Smith, D. Vaughan Griffiths, Lee Margetts.  |d Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014  |z 9781119973348  |w (DLC) 2013019445 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpPFEME006/programming-the-finite?kpromoter=marc  |y Full text