Inertial MEMS : principles and practice

"Inertial sensors exploit inertial forces acting on an object to determine its dynamic behavior. The basic dynamic parameters are acceleration along some axis and the angular rate. External forces acting on a body cause an acceleration and/or a change of its orientation (angular position). The...

Full description

Saved in:
Bibliographic Details
Main Author: Kempe, Volker.
Format: eBook
Language: English
Published: Cambridge ; New York : Cambridge University Press, 2011.
Subjects:
ISBN: 9780511933387
051193338X
9780511923913
0511923910
9780511933899
0511933894
9780511928178
0511928173
9780521766586
0521766583
1107217563
9781107217560
1283006146
9781283006149
9786613006141
6613006149
0511932022
9780511932021
0511925646
9780511925641
0511930682
9780511930683
Physical Description: 1 online resource (xiv, 475 pages) : illustrations

Cover

Table of contents

LEADER 04863cam a2200637 a 4500
001 kn-ocn705930829
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 110307s2011 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CDX  |d E7B  |d KNOVL  |d ZCU  |d DEBSZ  |d OCLCQ  |d B24X7  |d UIU  |d MNM  |d OCLCQ  |d YDXCP  |d KNOVL  |d AUD  |d OCLCF  |d CNNAI  |d OCLCQ  |d STF  |d VT2  |d OCLCQ  |d UAB  |d OCLCQ  |d CEF  |d RRP  |d INT  |d AU@  |d COO  |d OCLCQ  |d WYU  |d U3G  |d S9I  |d HS0  |d ERF  |d UKBTH  |d S2H  |d NJT  |d SFB  |d UX1  |d BRF  |d MM9  |d LUN  |d EYM  |d EUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UKAHL  |d LUU  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9780511933387  |q (electronic bk.) 
020 |a 051193338X  |q (electronic bk.) 
020 |a 9780511923913  |q (electronic bk.) 
020 |a 0511923910  |q (electronic bk.) 
020 |a 9780511933899  |q (electronic bk.) 
020 |a 0511933894  |q (electronic bk.) 
020 |a 9780511928178  |q (electronic bk.) 
020 |a 0511928173  |q (electronic bk.) 
020 |z 9780521766586 
020 |z 0521766583 
020 |a 1107217563 
020 |a 9781107217560 
020 |a 1283006146 
020 |a 9781283006149 
020 |a 9786613006141 
020 |a 6613006149 
020 |a 0511932022 
020 |a 9780511932021 
020 |a 0511925646 
020 |a 9780511925641 
020 |a 0511930682 
020 |a 9780511930683 
024 8 |a 9786613006141 
024 8 |a 40019943838 
035 |a (OCoLC)705930829  |z (OCoLC)712855515  |z (OCoLC)746756044  |z (OCoLC)776981770  |z (OCoLC)858447419  |z (OCoLC)961900614  |z (OCoLC)988678141  |z (OCoLC)999543619  |z (OCoLC)1058082834  |z (OCoLC)1065911866  |z (OCoLC)1136249840  |z (OCoLC)1170813723  |z (OCoLC)1172366235 
100 1 |a Kempe, Volker. 
245 1 0 |a Inertial MEMS :  |b principles and practice /  |c Volker Kempe. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xiv, 475 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a "Inertial sensors exploit inertial forces acting on an object to determine its dynamic behavior. The basic dynamic parameters are acceleration along some axis and the angular rate. External forces acting on a body cause an acceleration and/or a change of its orientation (angular position). The rate of change of the angular position is the angular velocity (angular rate). A speedometer is not an inertial sensor because it is able to measure a constant velocity of a body that is not exposed to inertial forces. An inertial sensor is unable to do so; however, if the initial conditions of the body are known, their evolution can be calculated by integrating the dynamic equation on the basis of the measured acceleration and rate signals. In the overwhelming majority of practical applications, such as vibrational measurements, active suspension systems, crash-detection systems, alert systems, medical activity monitoring, safety systems in cars, and computer-game interfaces, the short-term dynamic changes of the object are of interest. But there are also many applications where inertial sensors are used for determination of the positions and orientations of a body, as in robotics, general machine control, and navigation. Owing to the necessity of integrating the corresponding dynamic equations, the accuracy requirements in these applications are usually higher because the measurement errors and instabilities of the sensors are accumulated over the integration time. Often inertial sensors are used in conjunction with other measurement systems, as in the case of robotics, where they are used together with position and force/torque sensors, or in the case of the integration of Inertial Navigation Systems (INS) with Global Positioning Systems (GPS) in cars"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a 1. Introduction; 2. Transducers; 3. Non-inertial forces; 4. MEMS -- technologies; 5. First level packaging; 6. Electrical interfaces; 7. Accelerometers; 8. Gyroscopes; 9. Test and calibration; 10. Concluding remarks. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Microelectromechanical systems. 
650 0 |a Inertial navigation systems. 
650 0 |a BioMEMS. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Kempe, Volker.  |t Inertial MEMS.  |d Cambridge ; New York : Cambridge University Press, 2011  |z 9780521766586  |w (DLC) 2010037668  |w (OCoLC)667871802 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpIMEMSPP3/inertial-mems-principles?kpromoter=marc  |y Full text