Sensor and data fusion : a tool for information assessment and decision making

This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sen...

Full description

Saved in:
Bibliographic Details
Main Author: Klein, Lawrence A.
Format: eBook
Language: English
Published: Bellingham, Wash. : SPIE Press, ©2004.
Series: SPIE monograph ; PM138.
Subjects:
ISBN: 9781615837243
1615837248
9780819454355
0819454354
9780819481115
0819481114
Physical Description: 1 online resource (xxii, 317 pages) : illustrations.

Cover

Table of contents

LEADER 08238cam a2200565 a 4500
001 kn-ocn697185227
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 110117s2004 waua ob 001 0 eng d
040 |a KNOVL  |b eng  |e pn  |c KNOVL  |d CEF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d KNOVL  |d ZCU  |d KNOVL  |d OCLCF  |d J2I  |d OCLCE  |d SPIES  |d EBLCP  |d E7B  |d OCLCO  |d U5D  |d OCLCQ  |d CHVBK  |d OCLCO  |d KNOVL  |d MYG  |d YDXCP  |d OCLCQ  |d VT2  |d MERUC  |d BUF  |d OCLCQ  |d RRP  |d AU@  |d WYU  |d OCLCO  |d OCLCQ  |d OCLCO  |d BWN  |d ERF  |d OCLCO  |d OCLCQ  |d S2H  |d OCLCQ  |d BRF  |d MM9  |d EYM  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UIU  |d INARC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL  |d SXB 
020 |a 9781615837243  |q (electronic bk.) 
020 |a 1615837248  |q (electronic bk.) 
020 |a 9780819454355 
020 |a 0819454354 
020 |a 9780819481115  |q (electronic) 
020 |a 0819481114  |q (electronic) 
024 7 |a 10.1117/3.563340  |2 doi 
035 |a (OCoLC)697185227  |z (OCoLC)504289449  |z (OCoLC)606697056  |z (OCoLC)644978184  |z (OCoLC)645684625  |z (OCoLC)671980463  |z (OCoLC)961901362  |z (OCoLC)988673994  |z (OCoLC)999589889  |z (OCoLC)1027369300  |z (OCoLC)1044278821  |z (OCoLC)1048760759  |z (OCoLC)1058621267  |z (OCoLC)1064628295  |z (OCoLC)1064750226  |z (OCoLC)1071952765  |z (OCoLC)1110414310  |z (OCoLC)1116931120 
042 |a dlr 
100 1 |a Klein, Lawrence A. 
245 1 0 |a Sensor and data fusion :  |b a tool for information assessment and decision making /  |c Lawrence A. Klein. 
260 |a Bellingham, Wash. :  |b SPIE Press,  |c ©2004. 
300 |a 1 online resource (xxii, 317 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SPIE Press monograph ;  |v PM138 
504 |a Includes bibliographical references and index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book illustrates the benefits of sensor fusion by considering the characteristics of infrared, microwave, and millimeter-wave sensors, including the influence of the atmosphere on their performance. Applications that benefit from this technology include: vehicular traffic management, remote sensing, target classification and tracking- weather forecasting- military and homeland defense. Covering data fusion algorithms in detail, Klein includes a summary of the information required to implement each of the algorithms discussed, and outlines system application scenarios that may limit sensor size but that require high resolution data. 
505 0 |a Chapter 1. Introduction -- Chapter 2. Multiple sensor system applications, benefits, and design considerations -- 2.1. Data fusion applications to multiple sensor systems -- 2.2. Selection of sensors -- 2.3. Benefits of multiple sensor systems -- 2.4. Influence of wavelength on atmospheric attenuation -- 2.5. Fog characterization -- 2.6. Effects of operating frequency on MMW sensor performance -- 2.7. Absorption of MMW energy in rain and fog -- 2.8. Backscatter of MMW energy from rain -- 2.9. Effects of operating wavelength on IR sensor performance -- 2.10. Visibility metrics -- 2.10.1. Visibility -- 2.10.2. Meteorological range -- 2.11. Attenuation of IR energy by rain -- 2.12. Extinction coefficient values (typical) -- 2.13. Summary of attributes of electromagnetic sensors -- 2.14. Atmospheric and sensor system computer simulation models -- 2.14.1. LOWTRAN attenuation model -- 2.14.2. FASCODE and MODTRAN attenuation models -- 2.14.3. EOSAEL sensor performance model -- 2.15. Summary -- References. 
505 8 |a Chapter 3. Data fusion algorithms and architectures -- 3.1. Definition of data fusion -- 3.2. Level 1 processing -- 3.3. Level 2, 3, and 4 processing -- 3.4. Data fusion processor functions -- 3.5. Definition of an architecture -- 3.6. Data fusion architectures -- 3.7. Sensor footprint registration and size considerations -- 3.8. Summary -- References. 
505 8 |a Chapter 4. Classical inference -- 4.1. Estimating the statistics of a population -- 4.2. Interpreting the confidence interval -- 4.3. Confidence interval for a population mean -- 4.4. Significance tests for hypotheses -- 4.5. The z-test for the population mean -- 4.6. Tests with fixed significance level -- 4.7. The t-test for a population mean -- 4.8. Caution in use of significance tests -- 4.9. Inference as a decision -- 4.10. Summary -- References. 
505 8 |a Chapter 5. Bayesian inference -- 5.1. Bayes' rule -- 5.2. Bayes' rule in terms of odds probability and likelihood ratio -- 5.3. Direct application of Bayes' rule to cancer screening test example -- 5.4. Comparison of Bayesian inference with classical inference -- 5.5. Application of Bayesian inference to fusing information from multiple sources -- 5.6. Combining multiple sensor information using the odds probability form of Bayes' rule -- 5.7. Recursive Bayesian updating -- 5.8. Posterior calculation using multivalued hypotheses and recursive updating -- 5.9. Enhancing underground mine detection with data from two noncommensurate sensors -- 5.10. Summary -- References. 
505 8 |a Chapter 6. Dempster-Shafer evidential theory -- 6.1. Overview of the process -- 6.2. Implementation of the method -- 6.3. Support, plausibility, and uncertainty interval -- 6.4. Dempster's rule for combination of multiple sensor data -- 6.5. Comparison of Dempster-Shafer with Bayesian decision theory -- 6.6 Probabilistic models for transformation of Dempster-Shafer belief functions for decision making -- 6.7. Summary -- References. 
505 8 |a Chapter 7. Artificial neural networks -- 7.1. Applications of artificial neural networks -- 7.2. Adaptive linear combiner -- 7.3. Linear classifiers -- 7.4. Capacity of linear classifiers -- 7.5. Nonlinear classifiers -- 7.6. Capacity of nonlinear classifiers -- 7.7. Supervised and unsupervised learning -- 7.8. Supervised learning rules -- 7.9. Generalization -- 7.10. Other artificial neural networks and processing techniques -- 7.11. Summary -- References. 
505 8 |a Chapter 8. Voting logic fusion -- 8.1. Sensor target reports -- 8.2. Sensor detection space -- 8.3. System detection probability -- 8.4. Application example without singleton sensor detection modes -- 8.5. Hardware implementation of voting logic sensor fusion -- 8.6. Application example with singleton sensor detection modes -- 8.7. Comparison of voting logic fusion with Dempster-Shafer evidential theory -- 8.8. Summary -- References. 
505 8 |a Chapter 9. Fuzzy logic and fuzzy neural networks -- 9.1. Conditions under which fuzzy logic provides an appropriate solution -- 9.2. Illustration of fuzzy logic in an automobile antilock system -- 9.3. Basic elements of a fuzzy system -- 9.4. Fuzzy logic processing -- 9.5. Fuzzy centroid calculation -- 9.6. Balancing an inverted pendulum with fuzzy logic control -- 9.7. Fuzzy logic applied to multitarget tracking -- 9.8. Fuzzy neural networks -- 9.9. Fusion of fuzzy-valued information from multiple -- sources -- 9.10. Summary -- References. 
505 8 |a Chapter 10. Passive data association techniques for unambiguous location of targets -- 10.1. Data fusion options -- 10.2. Received-signal fusion -- 10.3. Angle data fusion -- 10.4. Decentralized fusion architecture -- 10.5. Passive computation of range using tracks from a single sensor site -- 10.6. Summary -- References. 
505 8 |a Chapter 11. Retrospective comments -- Appendix A. Planck radiation law and radiative transfer -- A.1. Planck radiation law -- A.2. Radiative transfer theory -- References -- Appendix B. Voting fusion with nested confidence levels -- Index. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Signal processing  |x Digital techniques. 
650 0 |a Multisensor data fusion. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Print version:  |a Klein, Lawrence A.  |t Sensor and data fusion.  |d Bellingham, Wash. : SPIE Press, ©2004  |z 0819454354  |w (DLC) 2004003963  |w (OCoLC)54536689 
830 0 |a SPIE monograph ;  |v PM138. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpSDFATIA1/sensor-and-data?kpromoter=marc  |y Full text