Optical lithography : here is why

This book is aimed at new and experienced engineers, technology managers, and senior technicians who want to enrich their understanding of the image formation physics of a lithographic system. Readers will gain knowledge of the basic equations and constants that drive optical lithography, learn the...

Full description

Saved in:
Bibliographic Details
Main Author: Lin, Burn Jeng, 1942-
Corporate Author: SPIE (Society)
Format: eBook
Language: English
Published: Bellingham, Wash. : SPIE, 2010.
Series: SPIE monograph ; PM190.
Subjects:
ISBN: 9780819481825
0819481823
9781615837274
1615837272
0819475602
9780819475602
Physical Description: 1 online resource (xiv, 477 pages) : illustrations

Cover

Table of contents

LEADER 09373cam a2200553 a 4500
001 kn-ocn646252388
003 OCoLC
005 20240717213016.0
006 m o d
007 cr cn|||||||||
008 100528s2010 waua ob 001 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d J2I  |d OCLCQ  |d CEF  |d UKMGB  |d SPIES  |d CUS  |d KNOVL  |d EBLCP  |d E7B  |d DEBSZ  |d OCLCQ  |d KNOVL  |d YDXCP  |d OCLCQ  |d OCLCO  |d COO  |d OCLCF  |d N$T  |d KNOVL  |d OCLCQ  |d MERUC  |d KIJ  |d OCLCQ  |d U3W  |d OCLCQ  |d UWO  |d LVT  |d OCLCQ  |d S2H  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCL 
020 |a 9780819481825  |q (electronic bk.) 
020 |a 0819481823  |q (electronic bk.) 
020 |a 9781615837274  |q (electronic bk.) 
020 |a 1615837272  |q (electronic bk.) 
020 |z 0819475602 
020 |z 9780819475602 
024 7 |a 10.1117/3.821000  |2 doi 
035 |a (OCoLC)646252388  |z (OCoLC)694896928  |z (OCoLC)732874294  |z (OCoLC)1027330125  |z (OCoLC)1048761237  |z (OCoLC)1067134339  |z (OCoLC)1115996486  |z (OCoLC)1119431830  |z (OCoLC)1229723397 
100 1 |a Lin, Burn Jeng,  |d 1942-  |1 https://id.oclc.org/worldcat/entity/E39PBJqbpK4yMpDhC6HhjddqQq 
245 1 0 |a Optical lithography :  |b here is why /  |c Burn J. Lin. 
260 |a Bellingham, Wash. :  |b SPIE,  |c 2010. 
300 |a 1 online resource (xiv, 477 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SPIE Press monograph ;  |v PM190 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- Chapter 1. Introducing optical lithography. 1.1. The role of lithography in integrated circuit fabrication -- 1.2. The goal of lithography -- 1.3. The metrics of lithography -- 1.4. The contents of this book. 
505 8 |a Chapter 2 Exposure systems. 2.1. Proximity printing -- 2.2. Projection printing and a comparison to proximity printing -- 2.3. Full-wafer field -- 2.4. Step and repeat -- 2.5. Step and scan -- 2.6. Reduction and 1X systems -- 2.7. 1X mask fabricated with a reduction system -- 2.8. Summary -- References. 
505 8 |a Chapter 3. Image formation. 3.1. The aerial image. 3.1.1. Effects of a spherical wavefront and deviations from it; 3.1.2. Spherical wavefront; 3.1.3. The effect of a finite numerical aperture on the spherical wavefront; 3.1.4. Deviation from a spherical wavefront; 3.1.5. Imaging from a mask pattern; 3.1.6. Spatial frequencies; 3.1.7. Imaging results -- 3.2. Reflected and refracted images. 3.2.1. Methods to evaluate the reflected and refracted image from a mask; 3.2.2. Impact of multiple reflections on DOF -- 3.3. The latent image -- 3.4. The resist image. 3.4.1. The A, B, C coefficients; 3.4.2. The lumped parameters; 3.4.3. [Beta] and [eta] -- 3.5. From aerial image to resist image -- 3.6. The transferred image. 3.6.1. Isotropic etching; 3.6.2. Anisotropic etching; 3.6.3. Lift off; 3.6.4. Ion implantation; 3.6.5. Electroplating -- References. 
505 8 |a Chapter 4. The metrics of lithography. 4.1. The resolution and DOF scaling equations -- 4.2. Determination of k1 and k3 based on microscopy -- 4.3. Determination of k1, k2, and k3 based on lithography. 4.3.1. E-D branches, trees, and regions; 4.3.2. E-D window, DOF, and exposure latitude; 4.3.3. Determination of k1, k2, and k3 using E-D windows -- 4.4. k1, k2, and k3 as normalized lateral and longitudinal units of dimension -- 4.5. The E-D tools. 4.5.1. Construction of E-D trees; 4.5.2. Importance of log scale in the exposure axis; 4.5.3. Elliptical E-D window; 4.5.4. EL-versus-DOF tradeoff; 4.5.5. Incorrect elliptical E-D window; 4.5.6. CD-centered versus full-CD-range E-D windows; 4.5.7. E-D window and CD control; 4.5.8. Application of E-D tools -- References. 
505 8 |a Chapter 5. Components in optical lithography. 5.1. Light source. 5.1.1. Mercury arc lamp; 5.1.2. Excimer laser -- 5.2. Illuminator. 5.2.1. Köhler illumination system; 5.2.2. Off-axis illumination -- 5.3. Masks. 5.3.1. Mask substrate and absorber; 5.3.2. Pellicles; 5.3.3. Critical parameters for masks; 5.3.4. Phase-shifting masks -- 5.4. Imaging lens. 5.4.1. Typical lens parameters; 5.4.2. Lens configurations; 5.4.3. Lens aberrations; 5.4.4. Lens fabrication -- 5.5. Lens maintenance -- 5.6. Photoresists. 5.6.1. Classifications; 5.6.2. Light interactions with a photoresist; 5.6.3. Profile of resist images -- 5.7. Antireflection coatings -- 5.8. Wafer -- 5.9. Wafer stage -- 5.10. Alignment system. 5.10.1. Off-axis alignment and through-the-lens alignment; 5.10.2. Field-by-field, global, and enhanced global alignment; 5.10.3. Bright-field and dark-field alignments -- References. 
505 8 |a Chapter 6. Processing and optimization. 6.1. Optimization of the exposure tool. 6.1.1. Optimization of NA; 6.1.2. Optimization of illumination; 6.1.3. Exposure and focus; 6.1.4. DOF budget; 6.1.5. Exposure tool throughput management -- 6.2. Resist processing. 6.2.1. Resist coating; 6.2.2. Resist baking; 6.2.3. Resist developing; 6.2.4. Aspect ratio of resist image; 6.2.5. Environmental contamination -- 6.3. k1 Reduction. 6.3.1. Phase-shifting masks; 6.3.2. Off-axis illumination; 6.3.3. Scattering bars; 6.3.4. Optical proximity correction -- 6.4. CD uniformity. 6.4.1. CDNU analysis; 6.4.2. CDU improvement -- References. 
505 8 |a Chapter 7. Immersion lithography. 7.1. Introduction -- 7.2. Resolution and DOF. 7.2.1. Wavelength reduction and spatial frequencies; 7.2.2. Resolution and DOF scaling equations; 7.2.3. Improving resolution and DOF with an immersion system -- 7.3. DOF in multilayered media. 7.3.1. Transmission and reflection in multilayered media; 7.3.2. Effects of wafer defocus movements; 7.3.3. Diffraction DOF; 7.3.4. Required DOF; 7.3.5. Available DOF; 7.3.6. Preferred refractive index in the coupling medium; 7.3.7. Tradeoff between resolution and DOFdiffrac -- 7.4. Polarization-dependent stray light. 7.4.1. Imaging at different polarizations; 7.4.2. Stray light -- 7.5. Immersion systems and components. 7.5.1. Configuration of an immersion system; 7.5.2. The immersion medium; 7.5.3. The immersion lens; 7.5.4. Bubbles in the immersion medium; 7.5.5. The mask; 7.5.6. Subwavelength 3D masks; 7.5.7. The photoresist -- 7.6. Impact on technology. 7.6.1. Simulation for an immersion system; 7.6.2. Polylayer; 7.6.3. Contact layer; 7.6.4. Metal layer; 7.6.5. Recommendation for the three technology nodes -- 7.7. Practicing immersion lithography. 7.7.1. Printing results; 7.7.2. Defect reduction; 7.7.3. Monitoring the immersion hood and special routing; 7.7.4. Other defect-reduction schemes; 7.7.5. Results -- 7.8. Extension of immersion lithography. 7.8.1. High-index materials; 7.8.2. Solid-immersion mask; 7.8.3. Polarized illumination; 7.8.4. Double exposures and pitch splitting; 7.8.5. Pack-unpack; 7.8.6. Overcoming the throughput penalty with double imaging -- 7.9. Conclusion on immersion lithography -- References. 
505 8 |a Chapter 8. Outlook and successors to optical lithography. 8.1. Outlook of optical lithography. 8.1.1. Optical lithography galaxy for logic gates; 8.1.2. Optical lithography galaxy for contact holes; 8.1.3. Optical lithography galaxy for equal lines and spaces -- 8.2. EUV lithography. 8.2.1. Introduction; 8.2.2. EUV sources; 8.2.3. EUV masks; 8.2.4. EUV projection optics; 8.2.5. Wall-power consumption; 8.2.6. EUV resist; 8.2.7. EUV OPC; 8.2.8. Summary of EUVL -- 8.3. Massively parallel E-beam maskless imaging. 8.3.1. Introduction to e-beam imaging; 8.3.2. MEB ML2 systems proposed; 8.3.3. Comparison of the different systems; 8.3.4. Data volume and the rate of DW systems; 8.3.5. Power consumption of MEB ML2; 8.3.6. Extendibility of MEB ML2 systems; 8.3.7. Comparison of 4X mask writing to 1X wafer writing; 8.3.8. Applications for MEB ML2; 8.3.9. Summary of MEB ML2 -- 8.4. Outlook of lithography. 8.4.1. Double patterning; 8.4.2. EUV lithography; 8.4.3. MEB ML2; 8.4.4. Nanoimprint lithography -- 8.5. Conclusions -- References -- Index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book is aimed at new and experienced engineers, technology managers, and senior technicians who want to enrich their understanding of the image formation physics of a lithographic system. Readers will gain knowledge of the basic equations and constants that drive optical lithography, learn the basics of exposure systems and image formation, and come away with a full understanding of system components, processing, and optimization. Readers will also get a primer on the outlook of optical lithography and the many next-generation technologies that may greatly enhance semiconductor manufacturing in the near future. 
590 |a Knovel  |b Knovel (All titles) 
650 0 |a Microlithography. 
650 0 |a Semiconductors  |x Etching. 
650 0 |a Lasers  |x Industrial applications. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
710 2 |a SPIE (Society) 
776 0 8 |i Print version:  |a Lin, Burn Jeng, 1942-  |t Optical lithography.  |d Bellingham, Wash. : SPIE, ©2009  |z 9780819475602  |w (DLC) 2009049350  |w (OCoLC)317450702 
830 0 |a SPIE monograph ;  |v PM190. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://app.knovel.com/hotlink/toc/id:kpOLHW0003/optical-lithography-here?kpromoter=marc  |y Full text