Seismic wave propagation in non-homogeneous elastic media by boundary elements

This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions an...

Full description

Saved in:
Bibliographic Details
Main Authors: Manolis, G. D. (Author), Dineva, Petia, (Author), Rangelov, Tsviatko, (Author), Wuttke, Frank, (Author)
Format: eBook
Language: English
Published: Cham : Springer, 2017.
Series: Solid mechanics and its applications ; 240.
Subjects:
ISBN: 9783319452067
9783319452050
Physical Description: 1 online resource (XVI, 294 pages) : illustrations

Cover

Table of contents

LEADER 05036cam a2200529Ii 4500
001 99860
003 CZ-ZlUTB
005 20240914112310.0
006 m o d
007 cr nn||||mamaa
008 160923s2017 sz a ob 001 0 eng d
040 |a UPM  |b eng  |e rda  |e pn  |c UPM  |d OCLCO  |d YDX  |d IDEBK  |d COO  |d MERUC  |d N$T  |d GW5XE  |d EBLCP  |d AZU  |d OCLCF  |d UAB  |d IOG  |d MERER  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d OH1  |d OCLCQ  |d VT2  |d OHI  |d OCL  |d U3W  |d OH1  |d KSU  |d AU@  |d OCLCQ  |d WYU  |d UWO  |d UKMGB  |d OCLCQ  |d ERF  |d UKBTH  |d OCLCQ 
020 |a 9783319452067 
020 |z 9783319452050 
024 7 |a 10.1007/978-3-319-45206-7  |2 doi 
035 |a (OCoLC)974651754  |z (OCoLC)959537255  |z (OCoLC)959593482  |z (OCoLC)960976874  |z (OCoLC)963350974  |z (OCoLC)963735869  |z (OCoLC)981954327  |z (OCoLC)988084487  |z (OCoLC)988808711  |z (OCoLC)990422168  |z (OCoLC)995595852  |z (OCoLC)1001355684  |z (OCoLC)1003202006  |z (OCoLC)1004971703  |z (OCoLC)1011104624  |z (OCoLC)1013739310  |z (OCoLC)1016985070  |z (OCoLC)1021407636  |z (OCoLC)1024161904  |z (OCoLC)1028904416  |z (OCoLC)1030777645  |z (OCoLC)1032683738  |z (OCoLC)1036270735  |z (OCoLC)1036692172  |z (OCoLC)1048140594  |z (OCoLC)1058398623  |z (OCoLC)1066651413  |z (OCoLC)1086449531  |z (OCoLC)1112525135  |z (OCoLC)1112950352  |z (OCoLC)1113449484  |z (OCoLC)1127182188  |z (OCoLC)1136481801  |z (OCoLC)1197538124 
100 1 |a Manolis, G. D.  |q (George D.),  |e author. 
245 1 0 |a Seismic wave propagation in non-homogeneous elastic media by boundary elements /  |c by George D. Manolis, Petia S. Dineva, Tsviatko V. Rangelov, Frank Wuttke. 
264 1 |a Cham :  |b Springer,  |c 2017. 
300 |a 1 online resource (XVI, 294 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Solid Mechanics and Its Applications,  |x 0925-0042 ;  |v 240 
505 0 |a Introduction -- Theoretical foundations -- Elastodynamic problem formulation -- Fundamental solutions -- Green's function -- Free-field motion -- Time-harmonic wave propagation in inhomogeneous and heterogeneous regions: The anti-plane strain case -- The anti-pane strain wave motion -- Anti-plane strain wave motion in finite inhomogeneous media -- In plane wave motion in unbounded cracked inhomogeneous media -- Site effects in finite geologicall region due to wave path inhomogeneity -- Wave scattering in a laterally inhomogeneous, cracked poroelastic finite region -- Index. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both recent references and seminal ones from the past. Since the background of the authors is in solid mechanics and mathematical physics, the presented BEM formulations are valid for many areas such as civil engineering, geophysics, material science and all others concerning elastic wave propagation through inhomogeneous and heterogeneous media. The material presented in this book is suitable for self-study. The book is written at a level suitable for advanced undergraduates or beginning graduate students in solid mechanics, computational mechanics and fracture mechanics. 
504 |a Includes bibliographical references and index. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Boundary element methods. 
650 0 |a Seismic waves. 
650 0 |a Engineering. 
650 0 |a Geotechnical engineering. 
650 0 |a Computer simulation. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mechanics, Applied. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Dineva, Petia,  |e author. 
700 1 |a Rangelov, Tsviatko,  |e author. 
700 1 |a Wuttke, Frank,  |e author. 
776 0 8 |i Printed edition:  |z 9783319452050 
830 0 |a Solid mechanics and its applications ;  |v 240.  |x 0925-0042 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-45206-7  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99860  |d 99860 
993 |x NEPOSILAT  |y EIZ