Principal component analysis networks and algorithms
This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various a...
Saved in:
Main Authors: | , , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Singapore :
Springer,
[2017]
|
Subjects: | |
ISBN: | 9789811029158 9789811029134 |
Physical Description: | 1 online resource |
LEADER | 03424cam a2200421Ii 4500 | ||
---|---|---|---|
001 | 99718 | ||
003 | CZ-ZlUTB | ||
005 | 20240914112147.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170112s2017 si ob 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d GW5XE |d N$T |d IDEBK |d YDX |d OCLCF |d UAB |d NJR |d CNCGM |d UPM |d IOG |d ESU |d Z5A |d JBG |d IAD |d ICW |d ICN |d ILO |d OTZ |d OCLCQ |d VT2 |d U3W |d CAUOI |d OCLCQ |d AAA |d KSU |d AU@ |d OCLCQ |d WYU |d UKMGB |d UKAHL |d OCLCQ |d ERF |d UKBTH |d LEATE | ||
020 | |a 9789811029158 |q (electronic bk.) | ||
020 | |z 9789811029134 |q (print) | ||
024 | 7 | |a 10.1007/978-981-10-2915-8 |2 doi | |
035 | |a (OCoLC)968211913 |z (OCoLC)969446267 |z (OCoLC)974651013 |z (OCoLC)981884354 |z (OCoLC)1005793175 |z (OCoLC)1011999229 |z (OCoLC)1048135829 |z (OCoLC)1058409749 |z (OCoLC)1066553366 |z (OCoLC)1086513225 |z (OCoLC)1112588130 |z (OCoLC)1112838432 |z (OCoLC)1113083528 |z (OCoLC)1116975591 |z (OCoLC)1122818133 | ||
100 | 1 | |a Kong, Xiangyu, |e author. | |
245 | 1 | 0 | |a Principal component analysis networks and algorithms / |c Xiangyu Kong, Changhua Hu, Zhansheng Duan. |
264 | 1 | |a Singapore : |b Springer, |c [2017] | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Introduction -- Eigenvalue and singular value decomposition -- Principal component analysis neural networks -- Minor component analysis neural networks -- Dual purpose methods for principal and minor component analysis -- Deterministic discrete time system for PCA or MCA methods -- Generalized feature extraction method -- Coupled principal component analysis -- Singular feature extraction neural networks. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields. | ||
590 | |a SpringerLink |b Springer Complete eBooks | ||
650 | 0 | |a Principal components analysis. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
700 | 1 | |a Hu, Changhua, |e author. | |
700 | 1 | |a Duan, Zhansheng, |e author. | |
776 | 0 | 8 | |i Printed edition: |z 9789811029134 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-981-10-2915-8 |y Plný text |
992 | |c NTK-SpringerENG | ||
999 | |c 99718 |d 99718 | ||
993 | |x NEPOSILAT |y EIZ |