Theory of periodic conjugate heat transfer
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Berlin, Germany :
Springer,
[2016]
|
Edition: | Third edition. |
Series: | Mathematical engineering.
|
Subjects: | |
ISBN: | 9783662534458 9783662534441 |
Physical Description: | 1 online resource (xxiii, 301 pages) : illustrations |
LEADER | 05179cam a2200517Ii 4500 | ||
---|---|---|---|
001 | 99464 | ||
003 | CZ-ZlUTB | ||
005 | 20240914111922.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 161019t20162017gw a ob 001 0 eng d | ||
040 | |a GW5XE |b eng |e rda |e pn |c GW5XE |d GW5XE |d EBLCP |d YDX |d IDB |d N$T |d UAB |d IOG |d ESU |d Z5A |d JBG |d IAD |d ICW |d ICN |d OTZ |d U3W |d CAUOI |d OCLCQ |d KSU |d INT |d OCLCQ |d UKMGB |d OCLCQ |d ERF |d OCLCQ |d UKBTH |d OCLCF |d OCLCQ | ||
020 | |a 9783662534458 |q (electronic bk.) | ||
020 | |z 9783662534441 |q (print) | ||
024 | 7 | |a 10.1007/978-3-662-53445-8. |2 doi | |
035 | |a (OCoLC)960908293 |z (OCoLC)962354979 |z (OCoLC)963702469 |z (OCoLC)965339137 |z (OCoLC)966913345 |z (OCoLC)1112563714 |z (OCoLC)1113051699 | ||
100 | 1 | |a Zudin, Yuri. B. |q (Yuri Borisovich), |e author. | |
245 | 1 | 0 | |a Theory of periodic conjugate heat transfer / |c Yuri B. Zudin. |
250 | |a Third edition. | ||
264 | 1 | |a Berlin, Germany : |b Springer, |c [2016] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xxiii, 301 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematical engineering | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface; Contents; Abbreviations; Symbols; 1 Introduction; 1.1 Heat Transfer Processes Containing Periodic Oscillations; 1.1.1 Oscillation Internal Structure of Convective Heat Transfer Processes; 1.1.2 Problem of Correct Averaging the Heat Transfer Coefficients; 1.2 Physical Examples; 1.3 Numerical Modeling of Conjugate Convective-Conductive Heat Transfer; 1.4 Mechanism of Hydrodynamic Oscillations in a Medium Flowing Over a Body; 1.4.1 Van Driest Model; 1.4.2 Periodic Model of the Reynolds Analogy; 1.4.3 Model of Periodical Contacts; 1.5 Hydrodynamic Heat Transfer Coefficient. | |
505 | 8 | |a 1.6 Previous Investigations of Heat Transfer Processes with Periodic Intensity1.7 Analytical Methods; References; 2 Construction of a General Solution of the Problem; 2.1 Boundary Value Problem for the Heat Conduction Equation; 2.2 Spatial and Temporal Types of Oscillations; 2.3 Interrelation Between the Two Averaged Coefficients of Heat Transfer; 2.3.1 First Form of the Notation of the Boundary Condition; 2.3.2 Second Form of the Notation of the Boundary Condition; 2.4 Dimensionless Parameters; 2.5 Factor of Conjugation. An Analysis of Limiting Variants; References. | |
505 | 8 | |a 3 Solution of Characteristic Problems3.1 Construction of the General Solution; 3.2 Harmonic Law of Oscillations; 3.3 Inverse Harmonic Law of Oscillations; 3.4 Delta-Like Law of Oscillations; 3.5 Step Law of Oscillations; 3.6 Comparative Analysis of the Conjugation Effects (Smooth and Step Oscillations); 3.7 Particular Exact Solution; 3.8 Asymptotic Solution for Thin Wall; 3.9 The Method of Separation of Variables; References; 4 Efficiency Algorithm of Computation of the Factor of Conjugation; 4.1 Smooth Oscillations (Approximate Solutions); 4.1.1 Harmonic Law of Oscillations. | |
505 | 8 | |a 4.1.2 Inverse Harmonic Law of Oscillations4.2 Boundary Condition on a Heat Transfer Surface (Series Expansion in a Small Parameter); 4.3 Derivation of a Computational Algorithm; 4.4 Approximate Solution for Smooth Oscillations; 4.5 Phase Shift Between Oscillations; 4.6 Method of Small Parameter; 4.7 Arbitrary Law of Oscillations; 4.8 Filtration Property of the Computational Algorithm; 4.9 Generalized Parameter of the Thermal Effect; 4.10 Advantages of the Computational Algorithm; References; 5 Solution of Special Problems; 5.1 Complex Case of Heating. | |
505 | 8 | |a 5.1.1 Linear Interrelation of Fluctuations5.1.2 Heat Supply from an Ambien; 5.1.3 Thermal Contact to Another Body; 5.2 Heat Transfer on the Surface of a Cylinder; 5.3 Heat Transfer on the Surface of a Sphere; 5.4 Parameter of Thermal Effect (Different Geometrical Bodies); 5.5 Overall Averaged True Heat Transfer Coefficient; 5.5.1 Overall Experimental Heat Transfer Coefficient; 5.5.2 Issues of the Heat Transfer Intensification; 5.5.3 Bilateral Spatio-Temporal Periodicity of Heat Transfer; 5.6 Step and Non-periodic Oscillations of the Heat Transfer Intensity; 5.6.1 Asymmetric Step Oscillations. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. | ||
590 | |a SpringerLink |b Springer Complete eBooks | ||
650 | 0 | |a Heat |x Transmission. | |
650 | 0 | |a Heat |x Conduction. | |
650 | 0 | |a Heat |x Convection. | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Printed edition: |z 9783662534441 |
830 | 0 | |a Mathematical engineering. | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-662-53445-8 |y Plný text |
992 | |c NTK-SpringerENG | ||
999 | |c 99464 |d 99464 | ||
993 | |x NEPOSILAT |y EIZ |