Theory of periodic conjugate heat transfer

This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.

Saved in:
Bibliographic Details
Main Author: Zudin, Yuri. B. (Author)
Format: eBook
Language: English
Published: Berlin, Germany : Springer, [2016]
Edition: Third edition.
Series: Mathematical engineering.
Subjects:
ISBN: 9783662534458
9783662534441
Physical Description: 1 online resource (xxiii, 301 pages) : illustrations

Cover

Table of contents

LEADER 05179cam a2200517Ii 4500
001 99464
003 CZ-ZlUTB
005 20240914111922.0
006 m o d
007 cr cnu---unuuu
008 161019t20162017gw a ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d GW5XE  |d EBLCP  |d YDX  |d IDB  |d N$T  |d UAB  |d IOG  |d ESU  |d Z5A  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d U3W  |d CAUOI  |d OCLCQ  |d KSU  |d INT  |d OCLCQ  |d UKMGB  |d OCLCQ  |d ERF  |d OCLCQ  |d UKBTH  |d OCLCF  |d OCLCQ 
020 |a 9783662534458  |q (electronic bk.) 
020 |z 9783662534441  |q (print) 
024 7 |a 10.1007/978-3-662-53445-8.  |2 doi 
035 |a (OCoLC)960908293  |z (OCoLC)962354979  |z (OCoLC)963702469  |z (OCoLC)965339137  |z (OCoLC)966913345  |z (OCoLC)1112563714  |z (OCoLC)1113051699 
100 1 |a Zudin, Yuri. B.  |q (Yuri Borisovich),  |e author. 
245 1 0 |a Theory of periodic conjugate heat transfer /  |c Yuri B. Zudin. 
250 |a Third edition. 
264 1 |a Berlin, Germany :  |b Springer,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xxiii, 301 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
490 1 |a Mathematical engineering 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Contents; Abbreviations; Symbols; 1 Introduction; 1.1 Heat Transfer Processes Containing Periodic Oscillations; 1.1.1 Oscillation Internal Structure of Convective Heat Transfer Processes; 1.1.2 Problem of Correct Averaging the Heat Transfer Coefficients; 1.2 Physical Examples; 1.3 Numerical Modeling of Conjugate Convective-Conductive Heat Transfer; 1.4 Mechanism of Hydrodynamic Oscillations in a Medium Flowing Over a Body; 1.4.1 Van Driest Model; 1.4.2 Periodic Model of the Reynolds Analogy; 1.4.3 Model of Periodical Contacts; 1.5 Hydrodynamic Heat Transfer Coefficient. 
505 8 |a 1.6 Previous Investigations of Heat Transfer Processes with Periodic Intensity1.7 Analytical Methods; References; 2 Construction of a General Solution of the Problem; 2.1 Boundary Value Problem for the Heat Conduction Equation; 2.2 Spatial and Temporal Types of Oscillations; 2.3 Interrelation Between the Two Averaged Coefficients of Heat Transfer; 2.3.1 First Form of the Notation of the Boundary Condition; 2.3.2 Second Form of the Notation of the Boundary Condition; 2.4 Dimensionless Parameters; 2.5 Factor of Conjugation. An Analysis of Limiting Variants; References. 
505 8 |a 3 Solution of Characteristic Problems3.1 Construction of the General Solution; 3.2 Harmonic Law of Oscillations; 3.3 Inverse Harmonic Law of Oscillations; 3.4 Delta-Like Law of Oscillations; 3.5 Step Law of Oscillations; 3.6 Comparative Analysis of the Conjugation Effects (Smooth and Step Oscillations); 3.7 Particular Exact Solution; 3.8 Asymptotic Solution for Thin Wall; 3.9 The Method of Separation of Variables; References; 4 Efficiency Algorithm of Computation of the Factor of Conjugation; 4.1 Smooth Oscillations (Approximate Solutions); 4.1.1 Harmonic Law of Oscillations. 
505 8 |a 4.1.2 Inverse Harmonic Law of Oscillations4.2 Boundary Condition on a Heat Transfer Surface (Series Expansion in a Small Parameter); 4.3 Derivation of a Computational Algorithm; 4.4 Approximate Solution for Smooth Oscillations; 4.5 Phase Shift Between Oscillations; 4.6 Method of Small Parameter; 4.7 Arbitrary Law of Oscillations; 4.8 Filtration Property of the Computational Algorithm; 4.9 Generalized Parameter of the Thermal Effect; 4.10 Advantages of the Computational Algorithm; References; 5 Solution of Special Problems; 5.1 Complex Case of Heating. 
505 8 |a 5.1.1 Linear Interrelation of Fluctuations5.1.2 Heat Supply from an Ambien; 5.1.3 Thermal Contact to Another Body; 5.2 Heat Transfer on the Surface of a Cylinder; 5.3 Heat Transfer on the Surface of a Sphere; 5.4 Parameter of Thermal Effect (Different Geometrical Bodies); 5.5 Overall Averaged True Heat Transfer Coefficient; 5.5.1 Overall Experimental Heat Transfer Coefficient; 5.5.2 Issues of the Heat Transfer Intensification; 5.5.3 Bilateral Spatio-Temporal Periodicity of Heat Transfer; 5.6 Step and Non-periodic Oscillations of the Heat Transfer Intensity; 5.6.1 Asymmetric Step Oscillations. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Heat  |x Transmission. 
650 0 |a Heat  |x Conduction. 
650 0 |a Heat  |x Convection. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Printed edition:  |z 9783662534441 
830 0 |a Mathematical engineering. 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-662-53445-8  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99464  |d 99464 
993 |x NEPOSILAT  |y EIZ