Stress concentration at notches

This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors? original solutions in the field considered with extensive discussion. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Savruk, Mykhaylo P., (Author), Kazberuk, Andrzej, (Author)
Format: eBook
Language: English
Published: Switzerland : Springer, [2017]
Subjects:
ISBN: 9783319445557
9783319445540
Physical Description: 1 online resource : illustrations

Cover

Table of contents

LEADER 06155cam a2200469Ii 4500
001 99398
003 CZ-ZlUTB
005 20240914111848.0
006 m o d
007 cr cnu---unuuu
008 160930s2017 sz a ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d EBLCP  |d YDX  |d N$T  |d GW5XE  |d OCLCO  |d OCLCF  |d COO  |d MERUC  |d UAB  |d QGJ  |d IOG  |d ESU  |d JBG  |d IAD  |d ICW  |d ICN  |d OTZ  |d OCLCQ  |d CNCGM  |d U3W  |d CAUOI  |d OCLCQ  |d CEF  |d KSU  |d WYU  |d UKMGB  |d OCLCO  |d AUD  |d OCLCQ  |d ERF  |d OCLCQ 
020 |a 9783319445557  |q (electronic bk.) 
020 |z 9783319445540 
035 |a (OCoLC)959618113  |z (OCoLC)959876163  |z (OCoLC)962126673 
100 1 |a Savruk, Mykhaylo P.,  |e author. 
245 1 0 |a Stress concentration at notches /  |c Mykhaylo P. Savruk, Andrzej Kazberuk. 
264 1 |a Switzerland :  |b Springer,  |c [2017] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
505 0 |a Preface; Contents; Acronyms; 1 Method of Singular Integral Equations in Application to Problems of the Theory of Elasticity; 1.1 Basic Relationships of the Plane Theory of Elasticity; 1.1.1 Basic Equations; 1.1.2 Complex Representation of General Solution for Equations of Plane Theory of Elasticity; 1.2 System of Curvilinear Cracks in Elastic Plane; 1.2.1 Selected Information Concerning the Theory of Analytical Functions; 1.2.2 Single Curvilinear Crack; 1.2.3 System of Curvilinear Cracks; 1.3 System of Curvilinear Holes and Cracks in Elastic Body; 1.3.1 Multiply Connected Region with Holes 
505 8 |a 1.3.2 Multiply Connected Region with Holes and Cracks1.4 Numerical Solution of Singular Integral Equations; 1.4.1 Quadrature Formulas; 1.4.2 Integral Equation on an Open Contour; 1.4.3 Integral Equation on a Closed Contour; References; 2 Stress Distribution in Elastic Plane with a Semi-infinite Notch; 2.1 Methods for Stress Analysis in Notched Bodies; 2.2 Eigensolutions of Elasticity Theory Plane Problem for Wedge; 2.2.1 Characteristic Equations; 2.2.2 Stress Intensity Factors in V-Notch Tip; 2.2.3 Constructing General Solution Using Eigenfunctions 
505 8 |a 2.3 Semi-infinite Curvilinear Notches in Elastic Plane2.3.1 Parabolic Notch; 2.3.2 Hyperbolic Notch; 2.3.3 Curvilinear Notch of Special Shape; 2.4 Rounded V-Notch Under Symmetrical Loading; 2.4.1 Problem Definition and Reduction to Singular Integral Equation; 2.4.2 Symmetrical Stress Distribution in Plane with Rounded V-Notch; 2.5 Rounded V-Notch Under Mixed Loading; 2.5.1 Antisymmetric Stress Distribution; 2.5.2 Complex-Stressed State; References; 3 Elastic Plane with Semi-infinite Notch and Cracks; 3.1 Elastic Wedge with Edge Crack at Notch Tip 
505 8 |a 3.1.1 Solutions Obtained Using Wiener -- Hopf Method3.1.2 Approximate Closed-Form Solution for Symmetrical Loading; 3.2 Edge Crack System in Semi-infinite Rounded V-Notch Tip; 3.2.1 Reduction of Problem to Singular Integral Equations; 3.2.2 Numerical Solution of Singular Integral Equations; 3.3 Symmetrical Edge Crack in Rounded V-Notch Tip; 3.4 Two Symmetrical Edge Cracks in Rounded V-Notch Tip; References; 4 Deformation Fracture Criterion for Bodies with Notches; 4.1 Fracture Criteria for Notched Solid Bodies; 4.2 Model of Plasticity Bands in Fracture Mechanics; 4.2.1 Plane Stress State 
505 8 |a 4.2.2 Plane Strain State4.3 Infinite Wedge with Plasticity Bands; 4.3.1 Plane Stress State; 4.3.2 Plane Strain State; 4.4 Plasticity Band Near Rounded V-Notch; 4.5 Two Plasticity Bands Near Rounded V-Notch; References; 5 Stress Concentration Near Hole in Elastic Plane; 5.1 Elliptical Hole; 5.1.1 Stress Concentration Near Elliptical Hole; 5.1.2 Limit Transition to Parabolic Notch; 5.1.3 Stress Distribution Around Notch Tip; 5.2 Oval Hole; 5.2.1 Stress Concentration Near Narrow Slot; 5.2.2 Stress Concentration Near Oval Hole; 5.2.3 Limit Transition to Two-Tip Lens-Like Hole; 5.3 Rhombic Hole 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors? original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation formulas suitable for use in research and engineering practice; Presents stress concentration factors calculated for blunt notches as well as smooth transition to the stress intensity factors for sharp notches; Includes a comprehensive survey of established and recent achievements in the field. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Fracture mechanics  |x Mathematical models. 
650 0 |a Stress concentration. 
650 0 |a Integral equations. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
700 1 |a Kazberuk, Andrzej,  |e author. 
776 0 8 |i Print version:  |t Stress Concentration at Notches.  |d [Place of publication not identified] : Springer Verlag 2016  |z 9783319445540  |w (OCoLC)953709415 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-3-319-44555-7  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99398  |d 99398 
993 |x NEPOSILAT  |y EIZ