Data-driven technology for engineering systems health management : design approach, feature construction, fault diagnosis, prognosis, fusion and decisions

This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as...

Full description

Saved in:
Bibliographic Details
Main Author: Niu, Gang, (Author)
Format: eBook
Language: English
Published: Singapore : Beijing, China : Springer ; Science Press, [2016]
Subjects:
ISBN: 9789811020322
9789811020315
Physical Description: 1 online resource (xiii, 357 pages) : illustrations

Cover

Table of contents

LEADER 05537cam a2200469Ii 4500
001 99238
003 CZ-ZlUTB
005 20240914111723.0
006 m o d
007 cr cnu|||unuuu
008 160729t20162017si a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d IDEBK  |d GW5XE  |d EBLCP  |d OCLCF  |d N$T  |d YDX  |d COO  |d OCLCQ  |d IOG  |d ESU  |d Z5A  |d JBG  |d IAD  |d ICW  |d ICN  |d ILO  |d OTZ  |d OCLCQ  |d U3W  |d CAUOI  |d KSU  |d UKMGB  |d UKAHL  |d OCLCQ 
020 |a 9789811020322  |q (electronic bk.) 
020 |z 9789811020315  |q (print) 
024 7 |a 10.1007/978-981-10-2032-2  |2 doi 
035 |a (OCoLC)954214872  |z (OCoLC)957615932 
100 1 |a Niu, Gang,  |e author. 
245 1 0 |a Data-driven technology for engineering systems health management :  |b design approach, feature construction, fault diagnosis, prognosis, fusion and decisions /  |c Gang Niu. 
264 1 |a Singapore :  |b Springer ;  |a Beijing, China :  |b Science Press,  |c [2016] 
264 4 |c ©2017 
300 |a 1 online resource (xiii, 357 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Acknowledgements; Contents; 1 Background of Systems Health Management; 1.1 Introduction; 1.2 Maintenance Strategy; 1.3 From Maintenance to PHM; 1.4 Definitions and Terms of Systems Health Management; 1.5 Preface to Book Chapters; References; 2 Design Approach for Systems Health Management; 2.1 Introduction; 2.2 Systems Engineering; 2.3 Systems Engineering, Dependability, and Health Management; 2.4 SHM Lifecycle Stages; 2.4.1 Research Stage; 2.4.2 Requirements Development Stage; 2.4.3 System/Functional Analysis; 2.4.4 Design, Synthesis, and Integration. 
505 8 |a 2.4.5 System Test and Evaluation2.4.6 HM System Maturation; 2.5 A Systems-Based Methodology for PHM/CBM Design; 2.6 A Proposed PHM Design Approach for Rotary Machinery Systems; References; 3 Overview of Data-Driven PHM; 3.1 Introduction; 3.2 PHM Technical Approaches; 3.3 Data-Driven PHM/CBM System Architecture; 3.4 Role of Condition Monitoring, Fault Diagnosis, and Prognosis; 3.5 Fault Diagnosis Framework; 3.6 Problems During Implementation; 3.7 Related Techniques; References; 4 Data Acquisition and Preprocessing; 4.1 Introduction; 4.2 Data Acquisition; 4.2.1 Selecting a Proper Measure. 
505 8 |a 4.2.2 Vibration Transducers4.2.3 Transducer Selection; 4.2.4 Transducer Mounting; 4.2.5 Transducer Location; 4.2.6 Frequency Span; 4.2.7 Data Display; 4.3 Data Processing; 4.4 Data Analysis; 4.4.1 Features in Time Domain; 4.4.2 Features in Frequency Domain; 4.4.3 Features in Time-Frequency Domain; References; 5 Statistic Feature Extraction; 5.1 Introduction; 5.2 Basic Concepts; 5.2.1 Pattern and Feature Vector; 5.2.2 Class; 5.3 Parameter Evaluation Technique; 5.4 Principal Component Analysis (PCA); 5.5 Independent Component Analysis (ICA); 5.6 Kernel PCA; 5.7 Kernel ICA. 
505 8 |a 5.8 Fisher Discriminant Analysis (FDA)5.9 Linear Discriminant Analysis (LDA); 5.10 Generalized Discriminant Analysis (GDA); 5.11 Clustering; 5.11.1 k-Centers Clustering; 5.11.2 k-Means Clustering; 5.11.3 Hierarchical Clustering; 5.12 Other Techniques; References; 6 Feature Selection Optimization; 6.1 Introduction; 6.2 Individual Feature Evaluation (IFE); 6.3 Conditional Entropy; 6.4 Backward Feature Selection; 6.5 Forward Feature Selection; 6.6 Branch and Bound Feature Selection; 6.7 Plus l-Take Away r Feature Selection; 6.8 Floating Forward Feature Selection. 
505 8 |a 6.9 Distance-Based Evaluation Technique6.10 Taguchi Method-Based Feature Selection; 6.11 Genetic Algorithm; 6.11.1 General Concept; 6.11.2 Differences from Other Traditional Methods; 6.11.3 Simple Genetic Algorithm (SGA); 6.11.4 Feature Selection Using GA; 6.12 Summary; References; 7 Intelligent Fault Diagnosis Methodology; 7.1 Introduction; 7.2 Linear Classifier; 7.2.1 Linear Separation of Finite Set of Vectors; 7.2.2 Perceptron Algorithm; 7.2.3 Kozinec's Algorithm; 7.2.4 Multi-class Linear Classifier; 7.3 Quadratic Classifier; 7.4 Bayesian Classifier; 7.5 k-Nearest Neighbors (k-NN). 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a This book introduces condition-based maintenance (CBM)/data-driven prognostics and health management (PHM) in detail, first explaining the PHM design approach from a systems engineering perspective, then summarizing and elaborating on the data-driven methodology for feature construction, as well as feature-based fault diagnosis and prognosis. The book includes a wealth of illustrations and tables to help explain the algorithms, as well as practical examples showing how to use this tool to solve situations for which analytic solutions are poorly suited. It equips readers to apply the concepts discussed in order to analyze and solve a variety of problems in PHM system design, feature construction, fault diagnosis and prognosis. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Fault location (Engineering) 
650 0 |a Systems engineering. 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Printed edition:  |z 9789811020315 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-981-10-2032-2  |y Plný text 
992 |c NTK-SpringerENG 
999 |c 99238  |d 99238 
993 |x NEPOSILAT  |y EIZ