Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R

The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these task...

Full description

Saved in:
Bibliographic Details
Main Author: Beysolow II, Taweh, (Author)
Format: eBook
Language: English
Published: [Place of publication not identified] : Apress®, [2017]
Subjects:
ISBN: 9781484227343
9781484227336
Physical Description: 1 online resource (xix, 227 pages)

Cover

Table of contents

LEADER 03059cam a2200433Ki 4500
001 98189
003 CZ-ZlUTB
005 20240914111105.0
006 m o d
007 cr cnu|||unuuu
008 170724s2017 xx o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d OCLCO  |d UAB  |d ESU  |d OCLCF  |d OH1  |d IDB  |d OCL  |d MERER  |d OCLCQ  |d VLB  |d IOG  |d VLB  |d K6U  |d MERUC  |d COO  |d LIV  |d U3W  |d D6H  |d VVB  |d ORZ  |d OCLCO  |d AZU  |d UPM  |d VT2  |d NJR  |d OCLCQ  |d AU@  |d OCLCQ  |d WYU  |d UKMGB  |d AUD  |d OCLCQ  |d ERF  |d OCLCQ  |d UBY  |d OCLCQ 
020 |a 9781484227343  |q (electronic bk.) 
020 |z 9781484227336 
024 7 |a 10.1007/978-1-4842-2734-3  |2 doi 
035 |a (OCoLC)994303033  |z (OCoLC)1002379794  |z (OCoLC)1058398491  |z (OCoLC)1066479597 
100 1 |a Beysolow II, Taweh,  |e author. 
245 1 0 |a Introduction to deep learning using R :  |b a step-by-step guide to learning and implementing deep learning models using R /  |c Taweh Beysolow II. 
264 1 |a [Place of publication not identified] :  |b Apress®,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (xix, 227 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a počítač  |b c  |2 rdamedia 
338 |a online zdroj  |b cr  |2 rdacarrier 
505 0 |a Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements. 
506 |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty 
520 |a The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. 
590 |a SpringerLink  |b Springer Complete eBooks 
650 0 |a Machine learning. 
650 0 |a R (Computer program language) 
650 0 |a Big data. 
650 0 |a Programming languages (Electronic computers) 
655 7 |a elektronické knihy  |7 fd186907  |2 czenas 
655 9 |a electronic books  |2 eczenas 
776 0 8 |i Printed edition:  |z 9781484227336 
856 4 0 |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-1-4842-2734-3  |y Plný text 
992 |c NTK-SpringerBM 
999 |c 98189  |d 98189 
993 |x NEPOSILAT  |y EIZ