Introduction to deep learning using R : a step-by-step guide to learning and implementing deep learning models using R
The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these task...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
[Place of publication not identified] :
Apress®,
[2017]
|
Subjects: | |
ISBN: | 9781484227343 9781484227336 |
Physical Description: | 1 online resource (xix, 227 pages) |
LEADER | 03059cam a2200433Ki 4500 | ||
---|---|---|---|
001 | 98189 | ||
003 | CZ-ZlUTB | ||
005 | 20240914111105.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 170724s2017 xx o 000 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d EBLCP |d N$T |d OCLCO |d UAB |d ESU |d OCLCF |d OH1 |d IDB |d OCL |d MERER |d OCLCQ |d VLB |d IOG |d VLB |d K6U |d MERUC |d COO |d LIV |d U3W |d D6H |d VVB |d ORZ |d OCLCO |d AZU |d UPM |d VT2 |d NJR |d OCLCQ |d AU@ |d OCLCQ |d WYU |d UKMGB |d AUD |d OCLCQ |d ERF |d OCLCQ |d UBY |d OCLCQ | ||
020 | |a 9781484227343 |q (electronic bk.) | ||
020 | |z 9781484227336 | ||
024 | 7 | |a 10.1007/978-1-4842-2734-3 |2 doi | |
035 | |a (OCoLC)994303033 |z (OCoLC)1002379794 |z (OCoLC)1058398491 |z (OCoLC)1066479597 | ||
100 | 1 | |a Beysolow II, Taweh, |e author. | |
245 | 1 | 0 | |a Introduction to deep learning using R : |b a step-by-step guide to learning and implementing deep learning models using R / |c Taweh Beysolow II. |
264 | 1 | |a [Place of publication not identified] : |b Apress®, |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (xix, 227 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
505 | 0 | |a Introduction to deep learning -- Mathematical review -- A review of optimization and machine learning -- Single and multilayer perceptron models -- Convolutional neural networks (CNNs) -- Recurrent neural networks (RNNs) -- Autoencoders, restricted boltzmann machines, and deep belief networks -- Experimental design and heuristics -- Hardware and software suggestions -- Machine learning example problems -- Deep learning and other example problems -- Closing statements. | |
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty | ||
520 | |a The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. | ||
590 | |a SpringerLink |b Springer Complete eBooks | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a R (Computer program language) | |
650 | 0 | |a Big data. | |
650 | 0 | |a Programming languages (Electronic computers) | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a electronic books |2 eczenas | |
776 | 0 | 8 | |i Printed edition: |z 9781484227336 |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/978-1-4842-2734-3 |y Plný text |
992 | |c NTK-SpringerBM | ||
999 | |c 98189 |d 98189 | ||
993 | |x NEPOSILAT |y EIZ |