PID control with intelligent compensation for exoskeleton robots
Explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint s...
Saved in:
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
London ; San Diego :
Academic Press, an imprint of Elsvier,
[2018]
|
Subjects: | |
ISBN: | 9780128134641 9780128133804 |
Physical Description: | 1 online zdroj : ilustrace. |
LEADER | 03437cam a2200553 i 4500 | ||
---|---|---|---|
001 | 91265 | ||
003 | CZ ZlUTB | ||
005 | 20240914105603.0 | ||
006 | m o d | ||
007 | cr |n | ||
008 | 180116t20182018enka fof 001 0 eng d | ||
999 | |c 91265 |d 91265 | ||
020 | |a 9780128134641 |q (ebook) | ||
020 | |z 9780128133804 | ||
035 | |a (OCoLC)1019750231 |z (OCoLC)1019680699 |z (OCoLC)1019885641 | ||
040 | |a YDX |b eng |e rda |e pn |c YDX |d N$T |d EBLCP |d N$T |d UIU |d OPELS |d OCLCF |d D6H |d OTZ | ||
072 | 7 | |a 681.5 |x Automatizační a řídicí technika |2 Konspekt |9 19 | |
080 | |a 681.515.8 |2 MRF | ||
080 | |a 681.5 |2 MRF | ||
080 | |a 007.52 |2 MRF | ||
080 | |a (035) |2 MRF | ||
080 | |a (0.034.2:08) |2 MRF | ||
100 | 1 | |a Yu, Wen, |c profesor titular, |e author. | |
245 | 1 | 0 | |a PID control with intelligent compensation for exoskeleton robots / |c Wen Yu, CINVESTAV-IPN (National Polytechnic Institute), Mexico City, Mexico. |
264 | 1 | |a London ; |a San Diego : |b Academic Press, an imprint of Elsvier, |c [2018] | |
264 | 4 | |c ©2018 | |
300 | |a 1 online zdroj : |b ilustrace. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a počítač |b c |2 rdamedia | ||
338 | |a online zdroj |b cr |2 rdacarrier | ||
504 | |a Obsahuje bibliografické odkazy a index. | ||
506 | |a Plný text je dostupný pouze z IP adres počítačů Univerzity Tomáše Bati ve Zlíně nebo vzdáleným přístupem pro zaměstnance a studenty univerzity | ||
520 | |a Explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. This is a great resource on how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering - Resumé vydavatel | ||
588 | 0 | |a Online resource; title from PDF title page (EBSCO, viewed January 23, 2018). | |
590 | |a Elsevier |b ScienceDirect All Books | ||
650 | 0 | 7 | |a PID regulátory |7 ph448241 |2 czenas |
650 | 0 | 7 | |a řídicí systémy |7 ph128305 |2 czenas |
650 | 0 | 7 | |a robotika |7 ph125173 |2 czenas |
650 | 0 | 9 | |a PID controllers |2 eczenas |
650 | 0 | 9 | |a control systems |2 eczenas |
650 | 0 | 9 | |a robotics |2 eczenas |
655 | 7 | |a příručky |7 fd133209 |2 czenas | |
655 | 7 | |a elektronické knihy |7 fd186907 |2 czenas | |
655 | 9 | |a handbooks and manuals |2 eczenas | |
655 | 9 | |a electronic books |2 eczenas | |
856 | 4 | 0 | |u https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/book/9780128133804 |y Plný text |
942 | |2 udc | ||
992 | |c EBOOK-TN |c ELSEVIER | ||
993 | |x NEPOSILAT |y EIZ |