Entropy in dynamical systems

"This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon-McMillan-Breiman Theorem, the Ornstein-Weiss Return Time Theorem, the Krieger...

Full description

Saved in:
Bibliographic Details
Main Author: Downarowicz, Tomasz, 1956- (Author)
Format: Book
Language: English
Published: Cambridge ; New York : Cambridge University Press, 2011
Edition: 1st pub.
Series: New mathematical monographs
Subjects:
ISBN: 9780521888851
Physical Description: xii, 391 s. : il. ; 24 cm

Cover

Table of contents

LEADER 03223cam a2200409 a 4500
001 60390
003 CZ ZlUTB
005 20240829144159.0
007 ta
008 101129s2011 xxka e b 001 0 eng
020 |a 9780521888851  |q (váz.) 
040 |a DLC  |b eng  |c DLC  |e rda  |d ZLD002 
072 7 |a 519.1/.8  |x Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování  |2 Konspekt  |9 13 
080 |a 519.722  |2 MRF 
080 |a 517.938  |2 MRF 
080 |a (075)  |2 MRF 
100 1 |a Downarowicz, Tomasz,  |d 1956-  |7 utb2011644890  |4 aut 
245 1 0 |a Entropy in dynamical systems /  |c Tomasz Downarowicz 
250 |a 1st pub. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011 
300 |a xii, 391 s. :  |b il. ;  |c 24 cm 
490 1 |a New mathematical monographs ;  |v 18 
520 |a "This comprehensive text on entropy covers three major types of dynamics: measure preserving transformations; continuous maps on compact spaces; and operators on function spaces. Part I contains proofs of the Shannon-McMillan-Breiman Theorem, the Ornstein-Weiss Return Time Theorem, the Krieger Generator Theorem and, among the newest developments, the ergodic law of series. In Part II, after an expanded exposition of classical topological entropy, the book addresses symbolic extension entropy. It offers deep insight into the theory of entropy structure and explains the role of zero-dimensional dynamics as a bridge between measurable and topological dynamics. Part III explains how both measure-theoretic and topological entropy can be extended to operators on relevant function spaces. Intuitive explanations, examples, exercises and open problems make this an ideal text for a graduate course on entropy theory. More experienced researchers can also find inspiration for further research"-- Anotace od vydavatele 
504 |a Obsahuje bibliografické odkazy a rejstřík 
505 8 |a Introduction; Part I. Entropy in Ergodic Theory: 1. Shannon information and entropy; 2. Dynamical entropy of a process; 3. Entropy theorems in processes; 4. Kolmogorov-Sinai entropy; 5. The ergodic law of series; Part II. Entropy in Topological Dynamics: 6. Topological entropy; 7. Dynamics in dimension zero; 8. The entropy structure; 9. Symbolic extensions; 10. A touch of smooth dynamics; Part III. Entropy Theory for Operators: 11. Measure theoretic entropy of stochastic operators; 12. Topological entropy of a Markov operator; 13. Open problems in operator entropy; Appendix A. Toolbox; Appendix B. Conditional S-M-B; List of symbols; References; Index 
650 0 7 |a informační entropie  |7 ph425914  |2 czenas 
650 0 7 |a dynamické systémy  |7 ph117185  |2 czenas 
650 0 9 |a information entropy  |2 eczenas 
650 0 9 |a dynamical systems  |2 eczenas 
655 7 |a učebnice  |7 fd133770  |2 czenas 
655 9 |a textbooks  |2 eczenas 
830 0 |a New mathematical monographs 
856 4 2 |3 Obálka  |u http://assets.cambridge.org/97805218/88851/cover/9780521888851.jpg 
910 |a ZLD002 
992 |a BK  |b SK 
999 |c 60390  |d 60390 
952 |0 0  |1 0  |4 0  |6 519DOWNAROWICZ  |7 0  |8 BOOK  |9 110586  |a UTBZL  |b UTBZL  |c 005  |d 2011-07-18  |o 519/DOWNAROWICZ  |p 420010138676  |r 2019-08-26  |v 1397.00  |w 2019-08-26  |x N:nákup;  |y 01