多任务学习在分子性质预测中的对比研究

随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究.其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属性,然而此类研究目前较为有限.本文采用硬参数共享结构与损失函数加权方法来实现多任务分子性质预测.通过对比单任务基准与各类多任务模型在不同分子属性集上的性能,展示了多属性预测精度强烈依赖于属性间的关系,当关联变复杂时,硬参数共享可以提高预测精度.此外,恰当的损失函数加权方法有利于实现更均衡的多目标优化,使预测更准确.进一步的实验展示了多任务学习模型的计算效率优势及其在训练数据量受限时的预测性能优势....

Full description

Saved in:
Bibliographic Details
Published in化学物理学报(英文版) Vol. 36; no. 4; pp. 443 - 452
Main Authors 韩超, 王皓, 朱健保, 刘淇, 朱文光
Format Journal Article
LanguageChinese
Published 中国科学技术大学物理学院,合肥 230026%中国科学技术大学计算机科学与技术学院,大数据分析与应用安徽省重点实验室,合肥 230026 2023
Subjects
Online AccessGet full text
ISSN1674-0068
DOI10.1063/1674-0068/cjcp2203055

Cover

Abstract 随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究.其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属性,然而此类研究目前较为有限.本文采用硬参数共享结构与损失函数加权方法来实现多任务分子性质预测.通过对比单任务基准与各类多任务模型在不同分子属性集上的性能,展示了多属性预测精度强烈依赖于属性间的关系,当关联变复杂时,硬参数共享可以提高预测精度.此外,恰当的损失函数加权方法有利于实现更均衡的多目标优化,使预测更准确.进一步的实验展示了多任务学习模型的计算效率优势及其在训练数据量受限时的预测性能优势.
AbstractList 随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究.其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属性,然而此类研究目前较为有限.本文采用硬参数共享结构与损失函数加权方法来实现多任务分子性质预测.通过对比单任务基准与各类多任务模型在不同分子属性集上的性能,展示了多属性预测精度强烈依赖于属性间的关系,当关联变复杂时,硬参数共享可以提高预测精度.此外,恰当的损失函数加权方法有利于实现更均衡的多目标优化,使预测更准确.进一步的实验展示了多任务学习模型的计算效率优势及其在训练数据量受限时的预测性能优势.
Abstract_FL With the bloom of deep learning algorithms,various models have been widely utilized in quantum chemistry cal-culation to design new molecules and explore molecular properties.However,limited stud-ies focus on multi-task molecular property prediction,which offers more efficient ways to si-multaneously learn different but related properties by leveraging the inter-task relationship.In this work,we apply the hard parameter sharing framework and advanced loss weighting methods to multi-task molecular property prediction.Based on the performance comparison between single-task baseline and multi-task models on several task sets,we find that the pre-diction accuracy largely depends on the inter-task relationship,and hard parameter sharing improves the performance when the correlation becomes complex.In addition,we show that proper loss weighting methods help achieve more balanced multi-task optimization and en-hance the prediction accuracy.Our additional experiments on varying amount of training da-ta further validate the multi-task advantages and show that multi-task models with proper loss weighting methods can achieve more accurate prediction of molecular properties with much less computational cost.
Author 朱健保
刘淇
王皓
朱文光
韩超
AuthorAffiliation 中国科学技术大学物理学院,合肥 230026%中国科学技术大学计算机科学与技术学院,大数据分析与应用安徽省重点实验室,合肥 230026
AuthorAffiliation_xml – name: 中国科学技术大学物理学院,合肥 230026%中国科学技术大学计算机科学与技术学院,大数据分析与应用安徽省重点实验室,合肥 230026
Author_FL Chao Han
Jianbao Zhu
Wenguang Zhu
Hao Wang
Qi Liu
Author_FL_xml – sequence: 1
  fullname: Chao Han
– sequence: 2
  fullname: Hao Wang
– sequence: 3
  fullname: Jianbao Zhu
– sequence: 4
  fullname: Qi Liu
– sequence: 5
  fullname: Wenguang Zhu
Author_xml – sequence: 1
  fullname: 韩超
– sequence: 2
  fullname: 王皓
– sequence: 3
  fullname: 朱健保
– sequence: 4
  fullname: 刘淇
– sequence: 5
  fullname: 朱文光
BookMark eNrjYmDJy89LZWCQNTTQMzQwM9Y3NDM30TUwMLPQT85KLjAyMjA2MDVlYeCEi3Mw8BYXZyYZGJkZm5uZWVhwMpg9XTLrye7dT7sWPl277MnOBU_nrHja0fZ07YRnDctfbFnxclHLs63dT3asfT6r5en6nc_WT3m-YMrzldt4GFjTEnOKU3mhNDeDuptriLOHbnliXlpiXnp8Vn5pUR5QJj6jojynIsnIwMjYwMTAwNKYeJUA0bFUGA
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1063/1674-0068/cjcp2203055
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitle_FL Comparison of Multi-task Approaches on Molecular Property Prediction
EndPage 452
ExternalDocumentID hxwlxb202304009
GroupedDBID -SB
-S~
02O
042
1JI
1WK
2B.
4.4
4A8
5B3
5VS
5XA
5XC
7.M
92E
92I
93N
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABJGX
ABJNI
ACAFW
ACBRY
ACWPO
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFHCQ
AFYNE
AGKCL
AGLKD
AGTJO
AHSDT
ALMA_UNASSIGNED_HOLDINGS
ATQHT
ATXIE
AWQPM
BBWZM
BPZLN
CAJEB
CW9
DU5
EBS
EDWGO
EJD
EQZZN
FDOHQ
FFFMQ
IOP
KOT
M45
M71
N9A
NT-
NT.
PSX
Q--
RIN
RIP
RIV
RNS
RQS
SY9
TCJ
TGP
U1G
U5L
ID FETCH-wanfang_journals_hxwlxb2023040093
ISSN 1674-0068
IngestDate Thu May 29 04:09:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 分子属性预测
Deep learning
深度学习
多任务学习
Molecular property prediction
损失函数加权方法
Multi-task learning
Uncertainty weighting
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_hxwlxb2023040093
ParticipantIDs wanfang_journals_hxwlxb202304009
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 化学物理学报(英文版)
PublicationTitle_FL Chinese Journal of Chemical Physics
PublicationYear 2023
Publisher 中国科学技术大学物理学院,合肥 230026%中国科学技术大学计算机科学与技术学院,大数据分析与应用安徽省重点实验室,合肥 230026
Publisher_xml – name: 中国科学技术大学物理学院,合肥 230026%中国科学技术大学计算机科学与技术学院,大数据分析与应用安徽省重点实验室,合肥 230026
SSID ssib026376688
ssib026376687
ssj0065100
ssib050169557
ssib055692153
ssib004869571
ssib025541138
ssib051367561
ssib023373770
ssib051380371
Score 4.757357
Snippet 随着深度学习的快速发展,相关算法被广泛应用于量子化学计算领域以实现高效的分子设计及性质研究.其中,多任务学习方法通过挖掘分子性质之间的关系可以同时预测多个分子属...
SourceID wanfang
SourceType Aggregation Database
StartPage 443
Title 多任务学习在分子性质预测中的对比研究
URI https://d.wanfangdata.com.cn/periodical/hxwlxb202304009
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1674-0068
  databaseCode: ADMLS
  dateStart: 20080227
  customDbUrl:
  isFulltext: true
  dateEnd: 20240930
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssj0065100
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA91e9CL-Inf9GDwIGvnK5nkOLM7pYj1YoXeSmc7axFZRVssPXkoInrx0FPxUEW0HkovKpb-NUKn1f_C38tkZ4a62CrCMmTyXt43eS9hkmXsaqY8V2azbnM26zrNwHVlU_vZbNOXCtURSrqu2RqYuC3H7wY3p8TUUON77aulhfn0Rmdp4LmSf_Eq-uBXOiX7F54tiaIDbfgXT3gYz0P5mCeCRwHXEU8CHsf0Q4-KeOQaUJtH0oA0jxzq0S0eKYOjuJIWRwMk6YuHKOSJ4nFgcDDE4yogUAz82NBRhJ-ExJFAGD5GxIGDhg4IBEa2oXks67Wv4dviWtZkC7nShEk0nUokAkmjiOAJWLRIYMgGMWKXQCCiQjucQAVOualB4usxQxgKAVdUEIxJjD5GDe1XEEn2iY3plGtYQ2Xo1a5QjOW0MlYBobC-aVKcaDYBXjMWjA6hjdVgX-3u11A5ljEsWLiT3HAYA0FF4ySvZbg4fRt5EP061nwO_a-m-H-igEhiIiukhg77BosGETRMYejBlAcpYNkBTfC4CMk2MaqiFaDERGtJXBD3Itx0YEMbQ2AyAiVWWfCFP8EOIaNMD2wUa4sMmhTsEcVm0QNJ_mDTWhqXYdCk00_1PO_L2nwW1JJ2UFwUZuu_oLhR-bfSArU87XL1KaPdud955Hnmkr2qmiq_cZ1bfPpgMaXgozypj7BhL0Qx3GDDUXvi1p0qaSqpRbUm83w_9MMqiWLJjxm0SpKeREkgqzWVfS_hgq5XEtWnDILuZKwdXse7cmp3YAohNcr-snyVSNLmFHlf0f6xR-mPln2jNdXNacded6Z3r1aYT55gx-2KeiQqpseTbGhp7hQ72ur_keVpJvP3qzvb2_nLt_nGh52ttfzNev7ieb7xevfZxx-f13--W9798mrn28be6nK-ubW7ubK3trL36esZdm0smWyNNy3faTslP5neZ3P_LGv0Hvayc2zES4XvYambya6DRydFgkozLOfSGV-i3jvPRg6iduFglIvsGLWLLdpLrDH_eCG7jEXLfHrFuv0Xly7erA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E4%BB%BB%E5%8A%A1%E5%AD%A6%E4%B9%A0%E5%9C%A8%E5%88%86%E5%AD%90%E6%80%A7%E8%B4%A8%E9%A2%84%E6%B5%8B%E4%B8%AD%E7%9A%84%E5%AF%B9%E6%AF%94%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%8C%96%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E9%9F%A9%E8%B6%85&rft.au=%E7%8E%8B%E7%9A%93&rft.au=%E6%9C%B1%E5%81%A5%E4%BF%9D&rft.au=%E5%88%98%E6%B7%87&rft.date=2023&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%90%88%E8%82%A5+230026%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%A4%A7%E6%95%B0%E6%8D%AE%E5%88%86%E6%9E%90%E4%B8%8E%E5%BA%94%E7%94%A8%E5%AE%89%E5%BE%BD%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%90%88%E8%82%A5+230026&rft.issn=1674-0068&rft.volume=36&rft.issue=4&rft.spage=443&rft.epage=452&rft_id=info:doi/10.1063%2F1674-0068%2Fcjcp2203055&rft.externalDocID=hxwlxb202304009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhxwlxb%2Fhxwlxb.jpg