基于EEMD-RVM风力发电机故障诊断方法研究

TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,...

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 55; no. 19; pp. 1 - 19
Main Authors 牛盛瑜, 张新燕, 杨璐璐, 邸强, 张冠琪
Format Journal Article
LanguageChinese
Published 新疆大学电气工程学院,乌鲁木齐,830047 2018
Subjects
Online AccessGet full text
ISSN1001-1390

Cover

Abstract TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,WPD)结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点.
AbstractList TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,WPD)结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点.
Author 牛盛瑜
邸强
张新燕
张冠琪
杨璐璐
AuthorAffiliation 新疆大学电气工程学院,乌鲁木齐,830047
AuthorAffiliation_xml – name: 新疆大学电气工程学院,乌鲁木齐,830047
Author_FL Zhang Xinyan
Niu Shengyu
Yang Lulu
Di Qiang
Zhang Guanqi
Author_FL_xml – sequence: 1
  fullname: Niu Shengyu
– sequence: 2
  fullname: Zhang Xinyan
– sequence: 3
  fullname: Yang Lulu
– sequence: 4
  fullname: Di Qiang
– sequence: 5
  fullname: Zhang Guanqi
Author_xml – sequence: 1
  fullname: 牛盛瑜
– sequence: 2
  fullname: 张新燕
– sequence: 3
  fullname: 杨璐璐
– sequence: 4
  fullname: 邸强
– sequence: 5
  fullname: 张冠琪
BookMark eNrjYmDJy89LZWHgNDQwMNQ1NLY04GDgLS7OTDIwNTQ2NzEzMOJkMH06f9eTXX2urr4uukFhvi8X9z3tmv20f-LzKVufzdn1bGrry1lzXqzvejZt7bNpO59tnvp8wZTnK7fxMLCmJeYUp_JCaW4GNTfXEGcP3fLEvLTEvPT4rPzSojygTHxKcmVlkpGBoYWhJdARxkQrBAAjsEfO
ClassificationCodes TM93
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Research on fault diagnosis method of wind turbine based on EEMD-RVM
EndPage 19
ExternalDocumentID dcyyb201819001
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (51367015,51667018)
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-wanfang_journals_dcyyb2018190013
ISSN 1001-1390
IngestDate Thu May 29 04:07:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords 相关向量机
综合经验模态分解
风力发电机
早期故障诊断
振动信号
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-wanfang_journals_dcyyb2018190013
ParticipantIDs wanfang_journals_dcyyb201819001
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2018
Publisher 新疆大学电气工程学院,乌鲁木齐,830047
Publisher_xml – name: 新疆大学电气工程学院,乌鲁木齐,830047
SSID ssib051374602
ssj0039791
ssib001129792
Score 4.2606587
Snippet TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)...
SourceID wanfang
SourceType Aggregation Database
StartPage 1
Title 基于EEMD-RVM风力发电机故障诊断方法研究
URI https://d.wanfangdata.com.cn/periodical/dcyyb201819001
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  issn: 1001-1390
  databaseCode: DOA
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039791
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnRy7btRAcBVSQYHCS7yJBENn5Neud8u1z6cI6ShQQOki23cH1SHBpUh6mhSJkJIUEAkkKgpEgUDivofzkb9gZr3nsyWkAM1qNDuv3Vl7Z9eeYeyeoHxQPBc4su8NHCp_4uS-P3RU5OXRQIXD3KN8594jsfYkfLjBN5bO3G38tbQ1zh8UO3_MK_kfryIO_UpZsv_g2VooIhBG_2KLHsb2r3wMKQfVhVhDGlIr8eTW6ziPn_YgVaADRBCJ1KBiA3RBeZBGoJCcQypAJYYbAezlxKU0IVMJukuM1CVAdywQKwLigOhRjnZJFAEKYtEMdFtasJWxsVEakxCIQWujxQNd_01LTFIZYyNqLeChRQsSDnFCiq1BrmFCKr4gwZ4OijXMPii3BhYkCqRP5lTi7G2Fvf2wr2paqS0tCEhBHDoEHRkA1Yj2UKsZQak4KdUcSTP4mhjHh77xcW2biUBDEkLGPgb11iVkOmI6ZLqfSCpXFjV2D_o_DUNqt7m9VFWI54-RamwWXiPqsB3t0t_9Yns7p1Fj1GZyFDGadBvXBibkxYAtWnwZ514QhcKtS6jRZ1tz6TA3zSSnjYbZ6FkjjlpfYeftAWhVV6v5AlvaeX6RnWuUxbzE-PT95Odkb76WTz7uTXffTfffzA6-lceT8vD1ydvjX192y6PP5dGP8uvh7MPB7NP3y-x-N11P1hyreNM-Qq822wMMrrDl0YvR4Cpb9XgmZJ7nWdHnofKULCLcOYp-kIlsiJhr7M4pwq6fSnGDnSW4uk-7yZbHL7cGtzDCHOe3zRT_Bv6LWI8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EEEMD-RVM%E9%A3%8E%E5%8A%9B%E5%8F%91%E7%94%B5%E6%9C%BA%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E7%89%9B%E7%9B%9B%E7%91%9C&rft.au=%E5%BC%A0%E6%96%B0%E7%87%95&rft.au=%E6%9D%A8%E7%92%90%E7%92%90&rft.au=%E9%82%B8%E5%BC%BA&rft.date=2018&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830047&rft.issn=1001-1390&rft.volume=55&rft.issue=19&rft.spage=1&rft.epage=19&rft.externalDocID=dcyyb201819001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg