基于EEMD-RVM风力发电机故障诊断方法研究
TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,...
Saved in:
Published in | 电测与仪表 Vol. 55; no. 19; pp. 1 - 19 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
新疆大学电气工程学院,乌鲁木齐,830047
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1390 |
Cover
Abstract | TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,WPD)结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点. |
---|---|
AbstractList | TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)结合相关向量机的方法对风力发电机多类故障进行早期诊断.首先,利用EEMD结合灰色关联度的方法对风机各类故障的振动信号进行预处理,提取最优故障特征;再通过相关向量机(Relevance Vector Machine,RVM)对提取的故障特征训练,并建立相应的故障诊断模型进行诊断.在实例中将文中所提方法EEMD-RVM与小波包分解(Wavelet Packet Decomposition,WPD)结合RVM以及EEMD结合最小二乘支持向量机LS-SVM(Least Square Support Vector Machine,LS-SVM)方法的诊断结果作对比,结果表明,EEMD-RVM方法具有可行性,且具有耗时短、精度高等优点. |
Author | 牛盛瑜 邸强 张新燕 张冠琪 杨璐璐 |
AuthorAffiliation | 新疆大学电气工程学院,乌鲁木齐,830047 |
AuthorAffiliation_xml | – name: 新疆大学电气工程学院,乌鲁木齐,830047 |
Author_FL | Zhang Xinyan Niu Shengyu Yang Lulu Di Qiang Zhang Guanqi |
Author_FL_xml | – sequence: 1 fullname: Niu Shengyu – sequence: 2 fullname: Zhang Xinyan – sequence: 3 fullname: Yang Lulu – sequence: 4 fullname: Di Qiang – sequence: 5 fullname: Zhang Guanqi |
Author_xml | – sequence: 1 fullname: 牛盛瑜 – sequence: 2 fullname: 张新燕 – sequence: 3 fullname: 杨璐璐 – sequence: 4 fullname: 邸强 – sequence: 5 fullname: 张冠琪 |
BookMark | eNrjYmDJy89LZWHgNDQwMNQ1NLY04GDgLS7OTDIwNTQ2NzEzMOJkMH06f9eTXX2urr4uukFhvi8X9z3tmv20f-LzKVufzdn1bGrry1lzXqzvejZt7bNpO59tnvp8wZTnK7fxMLCmJeYUp_JCaW4GNTfXEGcP3fLEvLTEvPT4rPzSojygTHxKcmVlkpGBoYWhJdARxkQrBAAjsEfO |
ClassificationCodes | TM93 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Research on fault diagnosis method of wind turbine based on EEMD-RVM |
EndPage | 19 |
ExternalDocumentID | dcyyb201819001 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (51367015,51667018) |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M |
ID | FETCH-wanfang_journals_dcyyb2018190013 |
ISSN | 1001-1390 |
IngestDate | Thu May 29 04:07:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | 相关向量机 综合经验模态分解 风力发电机 早期故障诊断 振动信号 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-wanfang_journals_dcyyb2018190013 |
ParticipantIDs | wanfang_journals_dcyyb201819001 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 电测与仪表 |
PublicationTitle_FL | Electrical Measurement & Instrumentation |
PublicationYear | 2018 |
Publisher | 新疆大学电气工程学院,乌鲁木齐,830047 |
Publisher_xml | – name: 新疆大学电气工程学院,乌鲁木齐,830047 |
SSID | ssib051374602 ssj0039791 ssib001129792 |
Score | 4.2606587 |
Snippet | TM93; 针对风力发电机早期故障表征不明显、能采集有效数据量较少、诊断结果精度较低等问题,文中提出一种运用综合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1 |
Title | 基于EEMD-RVM风力发电机故障诊断方法研究 |
URI | https://d.wanfangdata.com.cn/periodical/dcyyb201819001 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals issn: 1001-1390 databaseCode: DOA dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0039791 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnRy7btRAcBVSQYHCS7yJBENn5Neud8u1z6cI6ShQQOki23cH1SHBpUh6mhSJkJIUEAkkKgpEgUDivofzkb9gZr3nsyWkAM1qNDuv3Vl7Z9eeYeyeoHxQPBc4su8NHCp_4uS-P3RU5OXRQIXD3KN8594jsfYkfLjBN5bO3G38tbQ1zh8UO3_MK_kfryIO_UpZsv_g2VooIhBG_2KLHsb2r3wMKQfVhVhDGlIr8eTW6ziPn_YgVaADRBCJ1KBiA3RBeZBGoJCcQypAJYYbAezlxKU0IVMJukuM1CVAdywQKwLigOhRjnZJFAEKYtEMdFtasJWxsVEakxCIQWujxQNd_01LTFIZYyNqLeChRQsSDnFCiq1BrmFCKr4gwZ4OijXMPii3BhYkCqRP5lTi7G2Fvf2wr2paqS0tCEhBHDoEHRkA1Yj2UKsZQak4KdUcSTP4mhjHh77xcW2biUBDEkLGPgb11iVkOmI6ZLqfSCpXFjV2D_o_DUNqt7m9VFWI54-RamwWXiPqsB3t0t_9Yns7p1Fj1GZyFDGadBvXBibkxYAtWnwZ514QhcKtS6jRZ1tz6TA3zSSnjYbZ6FkjjlpfYeftAWhVV6v5AlvaeX6RnWuUxbzE-PT95Odkb76WTz7uTXffTfffzA6-lceT8vD1ydvjX192y6PP5dGP8uvh7MPB7NP3y-x-N11P1hyreNM-Qq822wMMrrDl0YvR4Cpb9XgmZJ7nWdHnofKULCLcOYp-kIlsiJhr7M4pwq6fSnGDnSW4uk-7yZbHL7cGtzDCHOe3zRT_Bv6LWI8 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EEEMD-RVM%E9%A3%8E%E5%8A%9B%E5%8F%91%E7%94%B5%E6%9C%BA%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E7%89%9B%E7%9B%9B%E7%91%9C&rft.au=%E5%BC%A0%E6%96%B0%E7%87%95&rft.au=%E6%9D%A8%E7%92%90%E7%92%90&rft.au=%E9%82%B8%E5%BC%BA&rft.date=2018&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830047&rft.issn=1001-1390&rft.volume=55&rft.issue=19&rft.spage=1&rft.epage=19&rft.externalDocID=dcyyb201819001 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg |