An efficient feature selection strategy based on bio-inspired algorithms for preventing cyber attacks in vehicular networks An efficient feature selection strategy based on bio-inspired

The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information security Vol. 24; no. 5
Main Authors Pedro, Vinicius A., Missima, Gabriel N., Bouzon, Murillo F., Rodrigues, Paulo S.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 03.09.2025
Subjects
Online AccessGet full text
ISSN1615-5262
1615-5270
DOI10.1007/s10207-025-01117-w

Cover

Abstract The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks and are consequently among the most frequently targeted. Despite this, research focusing specifically on malicious attacks within these networks remains scarce. A prevalent issue encountered within these networks is the infiltration of malicious codes, referred to as malware, into communication protocols, complicating detection efforts. A core challenge in this context is the precise specification of the distinctive characteristics of malicious navigation. Existing studies predominantly identify the presence of intrusions without detailing constituent features. This task is particularly daunting as examining the interplay of numerous features is computationally prohibitive. Consequently, the work proposed herein advocates a solution utilizing novel optimization algorithms inspired by biological mechanisms, known as bio-inspired algorithms. Our findings show that the CAN Identifier (ID) is the most critical attribute for observation, exhibiting an accuracy of 95.39%, and its significance is enhanced when analyzed in conjunction with the data length code (DLC) attribute, resulting in an increased accuracy of 95.59%. To our knowledge, these contributions have not yet been explored in current literature.
AbstractList The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks and are consequently among the most frequently targeted. Despite this, research focusing specifically on malicious attacks within these networks remains scarce. A prevalent issue encountered within these networks is the infiltration of malicious codes, referred to as malware, into communication protocols, complicating detection efforts. A core challenge in this context is the precise specification of the distinctive characteristics of malicious navigation. Existing studies predominantly identify the presence of intrusions without detailing constituent features. This task is particularly daunting as examining the interplay of numerous features is computationally prohibitive. Consequently, the work proposed herein advocates a solution utilizing novel optimization algorithms inspired by biological mechanisms, known as bio-inspired algorithms. Our findings show that the CAN Identifier (ID) is the most critical attribute for observation, exhibiting an accuracy of 95.39%, and its significance is enhanced when analyzed in conjunction with the data length code (DLC) attribute, resulting in an increased accuracy of 95.59%. To our knowledge, these contributions have not yet been explored in current literature.
Author Missima, Gabriel N.
Rodrigues, Paulo S.
Pedro, Vinicius A.
Bouzon, Murillo F.
Author_xml – sequence: 1
  givenname: Vinicius A.
  surname: Pedro
  fullname: Pedro, Vinicius A.
  email: valvespedro2003@gmail.com
  organization: Electrical and Computer Science Department, FEI University Center
– sequence: 2
  givenname: Gabriel N.
  surname: Missima
  fullname: Missima, Gabriel N.
  organization: Electrical and Computer Science Department, FEI University Center
– sequence: 3
  givenname: Murillo F.
  surname: Bouzon
  fullname: Bouzon, Murillo F.
  organization: Electrical and Computer Science Department, FEI University Center
– sequence: 4
  givenname: Paulo S.
  surname: Rodrigues
  fullname: Rodrigues, Paulo S.
  organization: Mathematical, Computer and Cognition Center, Federal University of ABC (UFABC)
BookMark eNqdj01Ow0AMRkeoSLTABVj5AgN2qjRiiRCIA7AfTYKTThtmInvaqOLyDD_iAKxsf5_8pLcyi5giG3NDeEuIzZ0SVthYrGqLRNTY-cwsaUO1rasGF3_7prowK9UdYkV4T0vz8RCB-z50gWOGnn0-CIPyyF0OKYJm8ZmHE7Re-Q1K0oZkQ9QpSLn9OCQJefuu0CeBSfhYOCEO0J1aFvA5-26vECIceRu6w-gFIuc5yV6vzHnvR-Xr33lp1s9Pr48vVicpCBa3SweJpXKE7svT_Xi64um-Pd28_t_XJ79iYYo
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DOI 10.1007/s10207-025-01117-w
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1615-5270
ExternalDocumentID 10_1007_s10207_025_01117_w
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29J
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7WY
8FL
8TC
8VB
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBR
EBS
EBU
EIOEI
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAS
LLZTM
M0O
MA-
NB0
NPVJJ
NQJWS
O93
O9J
P2P
P9O
PF0
PQBIZ
PT4
QOS
QWB
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~A9
ID FETCH-springer_journals_10_1007_s10207_025_01117_w3
IEDL.DBID U2A
ISSN 1615-5262
IngestDate Sat Oct 18 23:01:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Feature selection
Bio-inspired Algorithms
Cybersecurity
Intrusion Detection System (IDS)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-springer_journals_10_1007_s10207_025_01117_w3
ParticipantIDs springer_journals_10_1007_s10207_025_01117_w
PublicationCentury 2000
PublicationDate 20250903
PublicationDateYYYYMMDD 2025-09-03
PublicationDate_xml – month: 9
  year: 2025
  text: 20250903
  day: 3
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle International journal of information security
PublicationTitleAbbrev Int. J. Inf. Secur
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
SSID ssj0021091
Score 4.741687
Snippet The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public...
SourceID springer
SourceType Publisher
SubjectTerms Coding and Information Theory
Communications Engineering
Computer Communication Networks
Computer Science
Cryptology
Management of Computing and Information Systems
Networks
Operating Systems
Regular Contribution
Subtitle An efficient feature selection strategy based on bio-inspired
Title An efficient feature selection strategy based on bio-inspired algorithms for preventing cyber attacks in vehicular networks
URI https://link.springer.com/article/10.1007/s10207-025-01117-w
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-5270
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021091
  issn: 1615-5262
  databaseCode: AFBBN
  dateStart: 20010801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-5270
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021091
  issn: 1615-5262
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-5270
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021091
  issn: 1615-5262
  databaseCode: U2A
  dateStart: 20010825
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRjyrGxixVPJwkzFFDRWITlQqU-QkThsJ3KoJVBV_nrOTABIsnSJHka3LOf785e4-A1yLRFipF3PGiXsxhzsp8zMeM57ILBFx6rtdXTv8NOLDsfMwcSd1UVjRZLs3IUmzUv8qdrP0bzVLJ5vd0tq62oa2q-W8aBaPreCbZmmpS02zCKuJZnGrLpX5v48_AVCDK-E-7NYbQgwqDx7AllSHsNcctoD1t3cEn4FCafQeCCYwk0aQEwtzjA29Wywqmdk1alxKke7E-ZzlSkfSqS1ep_NlXs7eCqRtKi5q5SY1xWQd0ziiLHW1PeYKP-QsN9mpqKoc8eIY7HDwfDdkjRFRPQWL6EePWNsckc2RsTla2SfQUnMlTwHd1BME6ZKYas9xpOenPVdwj_zkEXflyRncbNLz-WaPX8COZXzhs659Ca1y-S6vCOPLuAPtIOz3R_p6__I46BgXfwFnm6of
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHPQiPuPbOXi0BEu7tEdiQJTHCRI8Ndt2gQZdDC0S9M87u23VqBeObZrtTna6M19nvm8BrnnAzdDxmcEIexkWs0LDHTHfYIEYBdwPXbuiuMPdHmsNrMehPcxIYXHe7Z6XJPVO_YPsZqrfaqZqNrulvXW5CUWLAIpZgGL9_qnd-AJaSuxSAS2K1gS0mJmRZf4f5U8JVEeWZgkG-ZzShpJpeZH45eD9l1zjupPehZ0s1cR66ht7sCHkPpTyYxww-6oP4KMuUWglCQpAOBJa6hNjfUAOrRrGqYDtClXEC5Hu-NHMiKSq0dM1fx7P5lEyeYmREmB8zTSh5BiDlU_v4UmiePwYSXwTk0j3vaJMu8_jQ6g2G_27lpHb5WXOHXvfSsfKOI-M87Rx3rJ6BAU5k-IY0A4dTsmCIAxcsyzhuGHN5swhD3AIFbPgBG7WGfl0vcevYKvV73a8zkOvfQbbpl4A16hUz6GQzBfigjKJxL_MHOcThiLHJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAXdsTOHDhitWRxk2MFVGWrOFCpt8iJnTYSuFUTqCp-nrGTQiW49BgrsjMZJ-PnmfcMcCkS4cgg5owT9mIe9yQLUx4znqg0EbEM_YbhDj93eafnPfT9_gKL31a7z1OSJafBqDTpoj6WaX2B-OaYLTbHFJ5d0392ugprnhFKoBndc1o_kMvIXhrIRXGbIBd3KtrM_338SYbaGNPehs1qcYit0ps7sKL0LmzND17A6jvcg6-WRmW1H-iRMVVWnBNze6QNvWfMS8nZGZoYJZFa4mzEMm2y6nQt3gajSVYM33OkJSuOKxUnPcBkFtM4oigM8x4zjZ9qmNlKVdRlvXi-D2777vWmw-ZGRNV0zKNfbWJjc0Q2R9bmaOoeQE2PtDoE9GUgKLwrQq1Nz1NBKJu-4AH5LCAcy5MjuFqm5-Plbr-A9ZfbdvR03308gQ3HuiVkDfcUasXkQ51R6C_ic-vdb6rarjc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+feature+selection+strategy+based+on+bio-inspired+algorithms+for+preventing+cyber+attacks+in+vehicular+networks&rft.jtitle=International+journal+of+information+security&rft.au=Pedro%2C+Vinicius+A.&rft.au=Missima%2C+Gabriel+N.&rft.au=Bouzon%2C+Murillo+F.&rft.au=Rodrigues%2C+Paulo+S.&rft.date=2025-09-03&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-5262&rft.eissn=1615-5270&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1007%2Fs10207-025-01117-w&rft.externalDocID=10_1007_s10207_025_01117_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-5262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-5262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-5262&client=summon