An efficient feature selection strategy based on bio-inspired algorithms for preventing cyber attacks in vehicular networks An efficient feature selection strategy based on bio-inspired
The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks a...
Saved in:
| Published in | International journal of information security Vol. 24; no. 5 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
03.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1615-5262 1615-5270 |
| DOI | 10.1007/s10207-025-01117-w |
Cover
| Abstract | The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks and are consequently among the most frequently targeted. Despite this, research focusing specifically on malicious attacks within these networks remains scarce. A prevalent issue encountered within these networks is the infiltration of malicious codes, referred to as malware, into communication protocols, complicating detection efforts. A core challenge in this context is the precise specification of the distinctive characteristics of malicious navigation. Existing studies predominantly identify the presence of intrusions without detailing constituent features. This task is particularly daunting as examining the interplay of numerous features is computationally prohibitive. Consequently, the work proposed herein advocates a solution utilizing novel optimization algorithms inspired by biological mechanisms, known as bio-inspired algorithms. Our findings show that the CAN Identifier (ID) is the most critical attribute for observation, exhibiting an accuracy of 95.39%, and its significance is enhanced when analyzed in conjunction with the data length code (DLC) attribute, resulting in an increased accuracy of 95.59%. To our knowledge, these contributions have not yet been explored in current literature. |
|---|---|
| AbstractList | The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public networks endure the highest frequency of such malicious attempts. Automotive networks constitutes a quintessential example of public networks and are consequently among the most frequently targeted. Despite this, research focusing specifically on malicious attacks within these networks remains scarce. A prevalent issue encountered within these networks is the infiltration of malicious codes, referred to as malware, into communication protocols, complicating detection efforts. A core challenge in this context is the precise specification of the distinctive characteristics of malicious navigation. Existing studies predominantly identify the presence of intrusions without detailing constituent features. This task is particularly daunting as examining the interplay of numerous features is computationally prohibitive. Consequently, the work proposed herein advocates a solution utilizing novel optimization algorithms inspired by biological mechanisms, known as bio-inspired algorithms. Our findings show that the CAN Identifier (ID) is the most critical attribute for observation, exhibiting an accuracy of 95.39%, and its significance is enhanced when analyzed in conjunction with the data length code (DLC) attribute, resulting in an increased accuracy of 95.59%. To our knowledge, these contributions have not yet been explored in current literature. |
| Author | Missima, Gabriel N. Rodrigues, Paulo S. Pedro, Vinicius A. Bouzon, Murillo F. |
| Author_xml | – sequence: 1 givenname: Vinicius A. surname: Pedro fullname: Pedro, Vinicius A. email: valvespedro2003@gmail.com organization: Electrical and Computer Science Department, FEI University Center – sequence: 2 givenname: Gabriel N. surname: Missima fullname: Missima, Gabriel N. organization: Electrical and Computer Science Department, FEI University Center – sequence: 3 givenname: Murillo F. surname: Bouzon fullname: Bouzon, Murillo F. organization: Electrical and Computer Science Department, FEI University Center – sequence: 4 givenname: Paulo S. surname: Rodrigues fullname: Rodrigues, Paulo S. organization: Mathematical, Computer and Cognition Center, Federal University of ABC (UFABC) |
| BookMark | eNqdj01Ow0AMRkeoSLTABVj5AgN2qjRiiRCIA7AfTYKTThtmInvaqOLyDD_iAKxsf5_8pLcyi5giG3NDeEuIzZ0SVthYrGqLRNTY-cwsaUO1rasGF3_7prowK9UdYkV4T0vz8RCB-z50gWOGnn0-CIPyyF0OKYJm8ZmHE7Re-Q1K0oZkQ9QpSLn9OCQJefuu0CeBSfhYOCEO0J1aFvA5-26vECIceRu6w-gFIuc5yV6vzHnvR-Xr33lp1s9Pr48vVicpCBa3SweJpXKE7svT_Xi64um-Pd28_t_XJ79iYYo |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DOI | 10.1007/s10207-025-01117-w |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1615-5270 |
| ExternalDocumentID | 10_1007_s10207_025_01117_w |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29J 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8FL 8TC 8VB 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBR EBS EBU EIOEI ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAS LLZTM M0O MA- NB0 NPVJJ NQJWS O93 O9J P2P P9O PF0 PQBIZ PT4 QOS QWB R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~A9 |
| ID | FETCH-springer_journals_10_1007_s10207_025_01117_w3 |
| IEDL.DBID | U2A |
| ISSN | 1615-5262 |
| IngestDate | Sat Oct 18 23:01:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Feature selection Bio-inspired Algorithms Cybersecurity Intrusion Detection System (IDS) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-springer_journals_10_1007_s10207_025_01117_w3 |
| ParticipantIDs | springer_journals_10_1007_s10207_025_01117_w |
| PublicationCentury | 2000 |
| PublicationDate | 20250903 |
| PublicationDateYYYYMMDD | 2025-09-03 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250903 day: 3 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | International journal of information security |
| PublicationTitleAbbrev | Int. J. Inf. Secur |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| SSID | ssj0021091 |
| Score | 4.741687 |
| Snippet | The escalation in the number of Internet users is paralleled by an increase in malicious attacks targeting both private and public networks. Notably, public... |
| SourceID | springer |
| SourceType | Publisher |
| SubjectTerms | Coding and Information Theory Communications Engineering Computer Communication Networks Computer Science Cryptology Management of Computing and Information Systems Networks Operating Systems Regular Contribution |
| Subtitle | An efficient feature selection strategy based on bio-inspired |
| Title | An efficient feature selection strategy based on bio-inspired algorithms for preventing cyber attacks in vehicular networks |
| URI | https://link.springer.com/article/10.1007/s10207-025-01117-w |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1615-5270 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021091 issn: 1615-5262 databaseCode: AFBBN dateStart: 20010801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1615-5270 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021091 issn: 1615-5262 databaseCode: AGYKE dateStart: 20010101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1615-5270 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021091 issn: 1615-5262 databaseCode: U2A dateStart: 20010825 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu7DwRjyrGxixVPJwkzFFDRWITlQqU-QkThsJ3KoJVBV_nrOTABIsnSJHka3LOf785e4-A1yLRFipF3PGiXsxhzsp8zMeM57ILBFx6rtdXTv8NOLDsfMwcSd1UVjRZLs3IUmzUv8qdrP0bzVLJ5vd0tq62oa2q-W8aBaPreCbZmmpS02zCKuJZnGrLpX5v48_AVCDK-E-7NYbQgwqDx7AllSHsNcctoD1t3cEn4FCafQeCCYwk0aQEwtzjA29Wywqmdk1alxKke7E-ZzlSkfSqS1ep_NlXs7eCqRtKi5q5SY1xWQd0ziiLHW1PeYKP-QsN9mpqKoc8eIY7HDwfDdkjRFRPQWL6EePWNsckc2RsTla2SfQUnMlTwHd1BME6ZKYas9xpOenPVdwj_zkEXflyRncbNLz-WaPX8COZXzhs659Ca1y-S6vCOPLuAPtIOz3R_p6__I46BgXfwFnm6of |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHPQiPuPbOXi0BEu7tEdiQJTHCRI8Ndt2gQZdDC0S9M87u23VqBeObZrtTna6M19nvm8BrnnAzdDxmcEIexkWs0LDHTHfYIEYBdwPXbuiuMPdHmsNrMehPcxIYXHe7Z6XJPVO_YPsZqrfaqZqNrulvXW5CUWLAIpZgGL9_qnd-AJaSuxSAS2K1gS0mJmRZf4f5U8JVEeWZgkG-ZzShpJpeZH45eD9l1zjupPehZ0s1cR66ht7sCHkPpTyYxww-6oP4KMuUWglCQpAOBJa6hNjfUAOrRrGqYDtClXEC5Hu-NHMiKSq0dM1fx7P5lEyeYmREmB8zTSh5BiDlU_v4UmiePwYSXwTk0j3vaJMu8_jQ6g2G_27lpHb5WXOHXvfSsfKOI-M87Rx3rJ6BAU5k-IY0A4dTsmCIAxcsyzhuGHN5swhD3AIFbPgBG7WGfl0vcevYKvV73a8zkOvfQbbpl4A16hUz6GQzBfigjKJxL_MHOcThiLHJQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAXdsTOHDhitWRxk2MFVGWrOFCpt8iJnTYSuFUTqCp-nrGTQiW49BgrsjMZJ-PnmfcMcCkS4cgg5owT9mIe9yQLUx4znqg0EbEM_YbhDj93eafnPfT9_gKL31a7z1OSJafBqDTpoj6WaX2B-OaYLTbHFJ5d0392ugprnhFKoBndc1o_kMvIXhrIRXGbIBd3KtrM_338SYbaGNPehs1qcYit0ps7sKL0LmzND17A6jvcg6-WRmW1H-iRMVVWnBNze6QNvWfMS8nZGZoYJZFa4mzEMm2y6nQt3gajSVYM33OkJSuOKxUnPcBkFtM4oigM8x4zjZ9qmNlKVdRlvXi-D2777vWmw-ZGRNV0zKNfbWJjc0Q2R9bmaOoeQE2PtDoE9GUgKLwrQq1Nz1NBKJu-4AH5LCAcy5MjuFqm5-Plbr-A9ZfbdvR03308gQ3HuiVkDfcUasXkQ51R6C_ic-vdb6rarjc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+feature+selection+strategy+based+on+bio-inspired+algorithms+for+preventing+cyber+attacks+in+vehicular+networks&rft.jtitle=International+journal+of+information+security&rft.au=Pedro%2C+Vinicius+A.&rft.au=Missima%2C+Gabriel+N.&rft.au=Bouzon%2C+Murillo+F.&rft.au=Rodrigues%2C+Paulo+S.&rft.date=2025-09-03&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-5262&rft.eissn=1615-5270&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1007%2Fs10207-025-01117-w&rft.externalDocID=10_1007_s10207_025_01117_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-5262&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-5262&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-5262&client=summon |