Another Generic Setting for Entity Resolution: Basic Theory

Benjelloun et al. \cite{BGSWW} considered the Entity Resolution (ER) problem as the generic process of matching and merging entity records judged to represent the same real world object. They treated the functions for matching and merging entity records as black-boxes and introduced four important p...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Guo, Xiuzhan, Berrill, Arthur, Kulkarni, Ajinkya, Belezko, Kostya, Luo, Min
Format Paper
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 12.03.2023
Subjects
Online AccessGet full text
ISSN2331-8422

Cover

Abstract Benjelloun et al. \cite{BGSWW} considered the Entity Resolution (ER) problem as the generic process of matching and merging entity records judged to represent the same real world object. They treated the functions for matching and merging entity records as black-boxes and introduced four important properties that enable efficient generic ER algorithms. In this paper, we shall study the properties which match and merge functions share, model matching and merging black-boxes for ER in a partial groupoid, based on the properties that match and merge functions satisfy, and show that a partial groupoid provides another generic setting for ER. The natural partial order on a partial groupoid is defined when the partial groupoid satisfies Idempotence and Catenary associativity. Given a partial order on a partial groupoid, the least upper bound and compatibility (\(LU_{pg}\) and \(CP_{pg}\)) properties are equivalent to Idempotence, Commutativity, Associativity, and Representativity and the partial order must be the natural one we defined when the domain of the partial operation is reflexive. The partiality of a partial groupoid can be reduced using connected components and clique covers of its domain graph, and a noncommutative partial groupoid can be mapped to a commutative one homomorphically if it has the partial idempotent semigroup like structures. In a finitely generated partial groupoid \((P,D,\circ)\) without any conditions required, the ER we concern is the full elements in \(P\). If \((P,D,\circ)\) satisfies Idempotence and Catenary associativity, then the ER is the maximal elements in \(P\), which are full elements and form the ER defined in \cite{BGSWW}. Furthermore, in the case, since there is a transitive binary order, we consider ER as ``sorting, selecting, and querying the elements in a finitely generated partial groupoid."
AbstractList Benjelloun et al. \cite{BGSWW} considered the Entity Resolution (ER) problem as the generic process of matching and merging entity records judged to represent the same real world object. They treated the functions for matching and merging entity records as black-boxes and introduced four important properties that enable efficient generic ER algorithms. In this paper, we shall study the properties which match and merge functions share, model matching and merging black-boxes for ER in a partial groupoid, based on the properties that match and merge functions satisfy, and show that a partial groupoid provides another generic setting for ER. The natural partial order on a partial groupoid is defined when the partial groupoid satisfies Idempotence and Catenary associativity. Given a partial order on a partial groupoid, the least upper bound and compatibility (\(LU_{pg}\) and \(CP_{pg}\)) properties are equivalent to Idempotence, Commutativity, Associativity, and Representativity and the partial order must be the natural one we defined when the domain of the partial operation is reflexive. The partiality of a partial groupoid can be reduced using connected components and clique covers of its domain graph, and a noncommutative partial groupoid can be mapped to a commutative one homomorphically if it has the partial idempotent semigroup like structures. In a finitely generated partial groupoid \((P,D,\circ)\) without any conditions required, the ER we concern is the full elements in \(P\). If \((P,D,\circ)\) satisfies Idempotence and Catenary associativity, then the ER is the maximal elements in \(P\), which are full elements and form the ER defined in \cite{BGSWW}. Furthermore, in the case, since there is a transitive binary order, we consider ER as ``sorting, selecting, and querying the elements in a finitely generated partial groupoid."
Author Belezko, Kostya
Luo, Min
Guo, Xiuzhan
Berrill, Arthur
Kulkarni, Ajinkya
Author_xml – sequence: 1
  givenname: Xiuzhan
  surname: Guo
  fullname: Guo, Xiuzhan
– sequence: 2
  givenname: Arthur
  surname: Berrill
  fullname: Berrill, Arthur
– sequence: 3
  givenname: Ajinkya
  surname: Kulkarni
  fullname: Kulkarni, Ajinkya
– sequence: 4
  givenname: Kostya
  surname: Belezko
  fullname: Belezko, Kostya
– sequence: 5
  givenname: Min
  surname: Luo
  fullname: Luo, Min
BookMark eNqNyrsKwjAUgOEgClbtOwScCzHpTZ1UvMzavRQ5tSnlHE1Oh769HXwAp3_4v4WYIiFMRKCN2UR5rPVchN63SimdZjpJTCD2ByRuwMkrIDj7lA9gtviSNTl5RrY8yDt46nq2hDt5rPyIigbIDSsxq6vOQ_jrUqwv5-J0i96OPj14LlvqHY6r1FmepnGcb5X5T30BIns4xQ
ContentType Paper
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-proquest_journals_27866448903
IEDL.DBID BENPR
IngestDate Mon Jun 30 09:12:57 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-proquest_journals_27866448903
Notes content type line 50
SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
OpenAccessLink https://www.proquest.com/docview/2786644890?pq-origsite=%requestingapplication%&accountid=15518
PQID 2786644890
PQPubID 2050157
ParticipantIDs proquest_journals_2786644890
PublicationCentury 2000
PublicationDate 20230312
PublicationDateYYYYMMDD 2023-03-12
PublicationDate_xml – month: 03
  year: 2023
  text: 20230312
  day: 12
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 3.3690412
SecondaryResourceType preprint
Snippet Benjelloun et al. \cite{BGSWW} considered the Entity Resolution (ER) problem as the generic process of matching and merging entity records judged to represent...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Algorithms
Associativity
Black boxes
Catenaries
Commutativity
Domains
Model matching
Semigroups
Upper bounds
Title Another Generic Setting for Entity Resolution: Basic Theory
URI https://www.proquest.com/docview/2786644890
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB7aXQRvPvFRS0CvwZjdJruKCJVdi9Cl-IDeSjY7BS-2tvXgxd9uJt3Vg9BjCElIGOaVb-YDuBApxj2MIy7KSnHqwMVNUhouFMqpFiWKmOqdh4UavMaP4964BUVTC0OwykYnekVdzSzlyC-lThTFEqm4m39wYo2i39WGQsPU1ArVrW8x1oZQUmesAMJ-VoyefrMuUmnnQ0f_FK-3JvkOhCMzx8UutPB9D7Y8CNMu9-HGxeLkjzHfC_rNsmf0qGTmHEuWUT3tF6N0-1pYrlnfuHVsXV1_AOd59nI_4M2Jk1pKlpO_O0WHELhwH4-AUQAmMUqnVhEbtE1iTLDqadSYmsrqY-hs2ulk8_QpbBNhOqGormQHgtXiE8-cWV2VXWgn-UO3fjE3Gn5nPxNWghk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qg-jNT6xWXVCP0bjZZBOlCNWU1LahaIXeSj6m4CWtTUX6H_zR7qSJHoSi580OYTfMzJvMmwdwbrgoLBSmbkSJrdMELj10olA3bORjaURoCOI79wLbfxGPQ2tYgc-SC0NtlaVPzB11MompRn7FpWMTlnCNu-mbTqpR9He1lNAIC2mFpJGPGCuIHR1cfCgIlzXaD-q-LzhveYN7Xy_tj4rrykY_xk311BpowhSugnJa0wv6T981G25LlYGbv9x2HotaW6D1wynOtqGC6Q6s5y2ccbYLtwrJUzbH8knSrzF7xrynmam0lHnExl0wKtYvP7Ub1gzVPrbk5u_B2R9eeh-q6STFA2AE3zia7ji2SUs6dgQ6mFgSJbphEssa1FdZOly9fAob_qDXHXXbQecINkl6nfqxrnkdqvPZOx6rAD2PTopzY3D5v4P_Au5kpUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Another+Generic+Setting+for+Entity+Resolution%3A+Basic+Theory&rft.jtitle=arXiv.org&rft.au=Guo%2C+Xiuzhan&rft.au=Berrill%2C+Arthur&rft.au=Kulkarni%2C+Ajinkya&rft.au=Belezko%2C+Kostya&rft.date=2023-03-12&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422