Problem Features vs. Algorithm Performance on Rugged Multi-objective Combinatorial Fitness Landscapes
In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unboun...
Saved in:
| Published in | Evolutionary computation Vol. 25; no. 4 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Massachusetts Institute of Technology Press (MIT Press)
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6560 1530-9304 |
| DOI | 10.1162/EVCO_a_00193 |
Cover
| Abstract | In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation (ρMNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an er-godic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a (1 + ε)−approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercor-relation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multi-linear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multi-modality to characterize instance hardness for this family of multi-objective optimization problems and algorithms. |
|---|---|
| AbstractList | In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation (ρMNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an er-godic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a (1 + ε)−approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercor-relation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multi-linear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multi-modality to characterize instance hardness for this family of multi-objective optimization problems and algorithms. |
| Author | Daolio, Fabio Tanaka, Kiyoshi Verel, Sébastien Liefooghe, Arnaud Aguirre, Hernan |
| Author_xml | – sequence: 1 givenname: Fabio surname: Daolio fullname: Daolio, Fabio organization: Faculty of Engineering [Nagano] – sequence: 2 givenname: Arnaud orcidid: 0000-0003-3283-3122 surname: Liefooghe fullname: Liefooghe, Arnaud organization: Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 – sequence: 3 givenname: Sébastien orcidid: 0000-0003-1661-4093 surname: Verel fullname: Verel, Sébastien organization: Laboratoire d'Informatique Signal et Image de la Côte d'Opale – sequence: 4 givenname: Hernan surname: Aguirre fullname: Aguirre, Hernan organization: Faculty of Engineering [Nagano] – sequence: 5 givenname: Kiyoshi surname: Tanaka fullname: Tanaka, Kiyoshi organization: Faculty of Engineering [Nagano] |
| BackLink | https://hal.science/hal-01380612$$DView record in HAL |
| BookMark | eNqVjs1qAjEUhUOxUG276wPcbRdjk0kNdSmDgwulUsRtuDNex0h-JMkM9O07hb5AV-fj8B04MzbxwRNjL4LPhVDl2_pYfWrUnIulvGNTsZC8WEr-PhmZK1moheIPbJbSdVRkycWU0T6GxpKDmjD3kRIMaQ4r24Vo8sXBnuI5RIe-JQgevvquoxPseptNEZortdkMBFVwjfGYxxFaqE32lBJs0Z9SizdKT-z-jDbR818-std6fag2xQWtvkXjMH7rgEZvVlv92433PrgS5SDkf9wfxn5SmA |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 1XC VOOES |
| DOI | 10.1162/EVCO_a_00193 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Mathematics |
| EISSN | 1530-9304 |
| ExternalDocumentID | oai:HAL:hal-01380612v1 |
| GroupedDBID | --- .4S .DC 0R~ 1XC 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX ABAZT ABDBF ABJNI ABVLG ACM ACUHS ADL AEBYY AEFXT AEJOY AENEX AENSD AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CCLIF COF CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF LHSKQ MCG MINIK O9- OCL P2P PK0 RMI SV3 TUS VOOES ZWS |
| ID | FETCH-hal_primary_oai_HAL_hal_01380612v13 |
| ISSN | 1063-6560 |
| IngestDate | Tue Oct 14 20:42:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | fitness landscape and problem difficulty multi-level multi-variate analysis random-effects mixed models feature-based analysis empirical performance modeling Evolutionary multi-objective optimization black-box 0–1 multi-objective problems |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-hal_primary_oai_HAL_hal_01380612v13 |
| ORCID | 0000-0003-3283-3122 0000-0003-1661-4093 0000-0003-1661-4093 0000-0003-3283-3122 |
| OpenAccessLink | https://hal.science/hal-01380612 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01380612v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Evolutionary computation |
| PublicationYear | 2017 |
| Publisher | Massachusetts Institute of Technology Press (MIT Press) |
| Publisher_xml | – name: Massachusetts Institute of Technology Press (MIT Press) |
| SSID | ssj0013201 |
| Score | 4.259477 |
| Snippet | In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box... |
| SourceID | hal |
| SourceType | Open Access Repository |
| SubjectTerms | Computer Science Mathematics Operations Research Optimization and Control |
| Title | Problem Features vs. Algorithm Performance on Rugged Multi-objective Combinatorial Fitness Landscapes |
| URI | https://hal.science/hal-01380612 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-9304 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0013201 issn: 1063-6560 databaseCode: ABDBF dateStart: 19960301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5ZzqU99JG26lurqpfKIi2GgPdI4iDaOmnUpFFuaNdewJVrKgM-9Nd3ZgcwVJGa9rIyi4VY5tPszOw3M4y9HWshlK8SyxEL13LHC2kJx06siZN4EymUWpgCpqdnXvTN_XR9eD0YdCsEV6U6mP-6Ma_kf6QKcyBXzJL9B8m2D4UJ-A3yhREkDOOtZHxO3WBGaMdV4DePtsXBKFilOXj82Q9kt7dJASDkr1WagnlpUm6tXH0nVYcaAbxj9L0xeB4uS6P8ZpgCjOSoohe739brQa7d3DSE6J3kT2W-WprgaygVMbwM22epkzxPMwqewrqqRXPrSm-IJ3BBR_awq2Kh1xaHabXcUJg8MhHvbpSC0jGJowQ-gJxnVaHLsugzIHaHB8Q3QZsaFDZdNIEQUstgSFlYJoh2rUZVfwBcUfPiRpdTEnWNWffmLcLDkrMnV8dfYomMPmrQ2K_EHQUX8fk0jGcfzz7373boi1EwgzGTKwtPe9FU3IIbvjfGwNCQ7QVH06Owc6BlOnG3C2lyMLzx--6rgIWTNRF9Y-FcPmD3ateEB4Szh2yg1_vsftP2g9e7wD6726lhCVenbeHf4hHTNSR5A0kOkOQtJHkHkjxfc4Ik_wOSvAdJXkOS7yD5mL0LTy6PIwtWEf-keikxVjCHjxXj3O5TOU_YcJ2v9VPGbVu4GlwXZScTd34oJo4vpJ0IXzra87X_jL35-_Oe3-ZPL9gdRCfF0F6yYbmp9CuwKkv1upbYb3YWgxQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Problem+Features+vs.+Algorithm+Performance+on+Rugged+Multi-objective+Combinatorial+Fitness+Landscapes&rft.jtitle=Evolutionary+computation&rft.au=Daolio%2C+Fabio&rft.au=Liefooghe%2C+Arnaud&rft.au=Verel%2C+S%C3%A9bastien&rft.au=Aguirre%2C+Hernan&rft.date=2017&rft.pub=Massachusetts+Institute+of+Technology+Press+%28MIT+Press%29&rft.issn=1063-6560&rft.eissn=1530-9304&rft.volume=25&rft.issue=4&rft_id=info:doi/10.1162%2FEVCO_a_00193&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01380612v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon |