Problem Features vs. Algorithm Performance on Rugged Multi-objective Combinatorial Fitness Landscapes

In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unboun...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary computation Vol. 25; no. 4
Main Authors Daolio, Fabio, Liefooghe, Arnaud, Verel, Sébastien, Aguirre, Hernan, Tanaka, Kiyoshi
Format Journal Article
LanguageEnglish
Published Massachusetts Institute of Technology Press (MIT Press) 2017
Subjects
Online AccessGet full text
ISSN1063-6560
1530-9304
DOI10.1162/EVCO_a_00193

Cover

Abstract In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation (ρMNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an er-godic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a (1 + ε)−approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercor-relation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multi-linear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multi-modality to characterize instance hardness for this family of multi-objective optimization problems and algorithms.
AbstractList In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box multi-objective combinatorial optimization problems. At first, we measure the performance of two conventional dominance-based approaches with unbounded archive on a benchmark of enumerable binary optimization problems with tunable ruggedness, objective space dimension, and objective correlation (ρMNK-landscapes). Precisely, we investigate the expected runtime required by a global evolutionary optimization algorithm with an er-godic variation operator (GSEMO) and by a neighborhood-based local search heuristic (PLS), to identify a (1 + ε)−approximation of the Pareto set. Then, we define a number of problem features characterizing the fitness landscape, and we study their intercor-relation and their association with algorithm runtime on the benchmark instances. At last, with a mixed-effects multi-linear regression we assess the individual and joint effect of problem features on the performance of both algorithms, within and across the instance classes defined by benchmark parameters. Our analysis reveals further insights into the importance of ruggedness and multi-modality to characterize instance hardness for this family of multi-objective optimization problems and algorithms.
Author Daolio, Fabio
Tanaka, Kiyoshi
Verel, Sébastien
Liefooghe, Arnaud
Aguirre, Hernan
Author_xml – sequence: 1
  givenname: Fabio
  surname: Daolio
  fullname: Daolio, Fabio
  organization: Faculty of Engineering [Nagano]
– sequence: 2
  givenname: Arnaud
  orcidid: 0000-0003-3283-3122
  surname: Liefooghe
  fullname: Liefooghe, Arnaud
  organization: Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189
– sequence: 3
  givenname: Sébastien
  orcidid: 0000-0003-1661-4093
  surname: Verel
  fullname: Verel, Sébastien
  organization: Laboratoire d'Informatique Signal et Image de la Côte d'Opale
– sequence: 4
  givenname: Hernan
  surname: Aguirre
  fullname: Aguirre, Hernan
  organization: Faculty of Engineering [Nagano]
– sequence: 5
  givenname: Kiyoshi
  surname: Tanaka
  fullname: Tanaka, Kiyoshi
  organization: Faculty of Engineering [Nagano]
BackLink https://hal.science/hal-01380612$$DView record in HAL
BookMark eNqVjs1qAjEUhUOxUG276wPcbRdjk0kNdSmDgwulUsRtuDNex0h-JMkM9O07hb5AV-fj8B04MzbxwRNjL4LPhVDl2_pYfWrUnIulvGNTsZC8WEr-PhmZK1moheIPbJbSdVRkycWU0T6GxpKDmjD3kRIMaQ4r24Vo8sXBnuI5RIe-JQgevvquoxPseptNEZortdkMBFVwjfGYxxFaqE32lBJs0Z9SizdKT-z-jDbR818-std6fag2xQWtvkXjMH7rgEZvVlv92433PrgS5SDkf9wfxn5SmA
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1162/EVCO_a_00193
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Mathematics
EISSN 1530-9304
ExternalDocumentID oai:HAL:hal-01380612v1
GroupedDBID ---
.4S
.DC
0R~
1XC
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
O9-
OCL
P2P
PK0
RMI
SV3
TUS
VOOES
ZWS
ID FETCH-hal_primary_oai_HAL_hal_01380612v13
ISSN 1063-6560
IngestDate Tue Oct 14 20:42:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fitness landscape and problem difficulty
multi-level multi-variate analysis
random-effects mixed models
feature-based analysis
empirical performance modeling
Evolutionary multi-objective optimization
black-box 0–1 multi-objective problems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-hal_primary_oai_HAL_hal_01380612v13
ORCID 0000-0003-3283-3122
0000-0003-1661-4093
0000-0003-1661-4093
0000-0003-3283-3122
OpenAccessLink https://hal.science/hal-01380612
ParticipantIDs hal_primary_oai_HAL_hal_01380612v1
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle Evolutionary computation
PublicationYear 2017
Publisher Massachusetts Institute of Technology Press (MIT Press)
Publisher_xml – name: Massachusetts Institute of Technology Press (MIT Press)
SSID ssj0013201
Score 4.259477
Snippet In this paper, we attempt to understand and to contrast the impact of problem features on the performance of randomized search heuristics for black-box...
SourceID hal
SourceType Open Access Repository
SubjectTerms Computer Science
Mathematics
Operations Research
Optimization and Control
Title Problem Features vs. Algorithm Performance on Rugged Multi-objective Combinatorial Fitness Landscapes
URI https://hal.science/hal-01380612
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-9304
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013201
  issn: 1063-6560
  databaseCode: ABDBF
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5ZzqU99JG26lurqpfKIi2GgPdI4iDaOmnUpFFuaNdewJVrKgM-9Nd3ZgcwVJGa9rIyi4VY5tPszOw3M4y9HWshlK8SyxEL13LHC2kJx06siZN4EymUWpgCpqdnXvTN_XR9eD0YdCsEV6U6mP-6Ma_kf6QKcyBXzJL9B8m2D4UJ-A3yhREkDOOtZHxO3WBGaMdV4DePtsXBKFilOXj82Q9kt7dJASDkr1WagnlpUm6tXH0nVYcaAbxj9L0xeB4uS6P8ZpgCjOSoohe739brQa7d3DSE6J3kT2W-WprgaygVMbwM22epkzxPMwqewrqqRXPrSm-IJ3BBR_awq2Kh1xaHabXcUJg8MhHvbpSC0jGJowQ-gJxnVaHLsugzIHaHB8Q3QZsaFDZdNIEQUstgSFlYJoh2rUZVfwBcUfPiRpdTEnWNWffmLcLDkrMnV8dfYomMPmrQ2K_EHQUX8fk0jGcfzz7373boi1EwgzGTKwtPe9FU3IIbvjfGwNCQ7QVH06Owc6BlOnG3C2lyMLzx--6rgIWTNRF9Y-FcPmD3ateEB4Szh2yg1_vsftP2g9e7wD6726lhCVenbeHf4hHTNSR5A0kOkOQtJHkHkjxfc4Ik_wOSvAdJXkOS7yD5mL0LTy6PIwtWEf-keikxVjCHjxXj3O5TOU_YcJ2v9VPGbVu4GlwXZScTd34oJo4vpJ0IXzra87X_jL35-_Oe3-ZPL9gdRCfF0F6yYbmp9CuwKkv1upbYb3YWgxQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Problem+Features+vs.+Algorithm+Performance+on+Rugged+Multi-objective+Combinatorial+Fitness+Landscapes&rft.jtitle=Evolutionary+computation&rft.au=Daolio%2C+Fabio&rft.au=Liefooghe%2C+Arnaud&rft.au=Verel%2C+S%C3%A9bastien&rft.au=Aguirre%2C+Hernan&rft.date=2017&rft.pub=Massachusetts+Institute+of+Technology+Press+%28MIT+Press%29&rft.issn=1063-6560&rft.eissn=1530-9304&rft.volume=25&rft.issue=4&rft_id=info:doi/10.1162%2FEVCO_a_00193&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01380612v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon