An interpretable automated essay scoring model for English compositions based on SHAP algorithm

In response to the lack of interpretability in English composition automatic scoring systems due to their reliance on complex deep learning models, an interpretable English composition automatic scoring model was proposed based on the E5-SHAP algorithm. This model was based on the E5 base model enco...

Full description

Saved in:
Bibliographic Details
Published in智能科学与技术学报 Vol. 7; pp. 370 - 380
Main Authors WANG Bing, SHAN Ruixue, XING Haiyan, LI Panchi
Format Journal Article
LanguageChinese
Published POSTS&TELECOM PRESS Co., LTD 01.09.2025
Subjects
Online AccessGet full text
ISSN2096-6652

Cover

Abstract In response to the lack of interpretability in English composition automatic scoring systems due to their reliance on complex deep learning models, an interpretable English composition automatic scoring model was proposed based on the E5-SHAP algorithm. This model was based on the E5 base model encoder to extract text features, combined with a mean calculation and a regression layer to achieve scoring output. It introduced an adaptive weighting mechanism to comprehensively evaluate the quality of compositions across six dimensions, including grammar, syntax, and vocabulary diversity. The model utilized LoRA fine-tuning technology to optimize specific layer parameters and enhance adaptability to compositional features. By using the SHAP algorithm to calculate the impact of each feature on the final score, a clear scoring basis and explanation path was provided to enhance the transparency and credibility of the scoring process. The experimental results show that compared with existing models, the performance of
AbstractList In response to the lack of interpretability in English composition automatic scoring systems due to their reliance on complex deep learning models, an interpretable English composition automatic scoring model was proposed based on the E5-SHAP algorithm. This model was based on the E5 base model encoder to extract text features, combined with a mean calculation and a regression layer to achieve scoring output. It introduced an adaptive weighting mechanism to comprehensively evaluate the quality of compositions across six dimensions, including grammar, syntax, and vocabulary diversity. The model utilized LoRA fine-tuning technology to optimize specific layer parameters and enhance adaptability to compositional features. By using the SHAP algorithm to calculate the impact of each feature on the final score, a clear scoring basis and explanation path was provided to enhance the transparency and credibility of the scoring process. The experimental results show that compared with existing models, the performance of
Author SHAN Ruixue
WANG Bing
XING Haiyan
LI Panchi
Author_xml – sequence: 1
  fullname: WANG Bing
– sequence: 2
  fullname: SHAN Ruixue
– sequence: 3
  fullname: XING Haiyan
– sequence: 4
  fullname: LI Panchi
BookMark eNqtjMFKAzEQQHOoYLX9h_mBwma3jeuxSKXeBL2HSTK7jSSZJRMP_XuL-AmeHjx470GtChdaqXXfPZudMYf-Xm1Fouv2ujd6ME9rZY8FYmlUl0oNXSLA78YZGwUgEbyCeK6xzJA5UIKJK5zKnKJcwHNeWGKLXAQcyi3hAh_n4ztgmm9Vu-SNupswCW3_-KjeXk-fL-ddYPyyS40Z69UyRvsruM4Wa4s-kQ396OkQQjAB934aXWeGoI3unddhnLrhP18_i1xiUg
ContentType Journal Article
DBID DOA
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 380
ExternalDocumentID oai_doaj_org_article_d28ce5ddd6da4cf8b063d1612bc1d8f0
GroupedDBID -SI
-S~
2RA
AAXDM
ALMA_UNASSIGNED_HOLDINGS
APATB
CAJEI
GROUPED_DOAJ
PB1
PB9
ID FETCH-doaj_primary_oai_doaj_org_article_d28ce5ddd6da4cf8b063d1612bc1d8f03
IEDL.DBID DOA
ISSN 2096-6652
IngestDate Tue Oct 07 09:28:41 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-doaj_primary_oai_doaj_org_article_d28ce5ddd6da4cf8b063d1612bc1d8f03
OpenAccessLink https://doaj.org/article/d28ce5ddd6da4cf8b063d1612bc1d8f0
ParticipantIDs doaj_primary_oai_doaj_org_article_d28ce5ddd6da4cf8b063d1612bc1d8f0
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 智能科学与技术学报
PublicationYear 2025
Publisher POSTS&TELECOM PRESS Co., LTD
Publisher_xml – name: POSTS&TELECOM PRESS Co., LTD
SSID ssib041261367
ssj0002891595
ssib046786274
ssib051372948
Score 4.8645334
Snippet In response to the lack of interpretability in English composition automatic scoring systems due to their reliance on complex deep learning models, an...
SourceID doaj
SourceType Open Website
StartPage 370
SubjectTerms automated essay scoring
E5-SHAP algorithm
English composition
interpretability
Title An interpretable automated essay scoring model for English compositions based on SHAP algorithm
URI https://doaj.org/article/d28ce5ddd6da4cf8b063d1612bc1d8f0
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-6652
  databaseCode: DOA
  dateStart: 20190101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002891595
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAFFykJy-iVPGzvIPXYJNsku0xiiUKiqBCb2E_rVITselBf73vbVLNzYMeE0iyvF0yM-zsG8ZOMydRNyTjAGdXBtyGJpAOxYpwIjNxlAjF6aDwzW1aPPLrWTLrRX2RJ6xtD9wW7sxEQtvEUPCR5NoJhZhqkKZESodGOK_Wx2LSE1O4kniIwiD-AVb8GwgKmVlfJyHtVnVC4KXdbkNcJ79jhJw-SFM6iNRr4u_RZrrNtjqaCHk7vB228TkfsjKv4PnbJKgWFuSqqZFyWgOUZPIBS-39dODzbQD5KHTHdIGs42t_FhB0GagruC_yO5CLJ3yqmb_usqvp5cNFEdCIyre2D0VJnaH9DaxX2dWr_K1e8R4bVHVl9xlMpNEGMUxrbngmtJIx8m2d-eJZ6w7Y-d-_d_gfLzlimxHl7npv1zEbNO8re4JkoFEjP-9fMve4pg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interpretable+automated+essay+scoring+model+for+English+compositions+based+on+SHAP+algorithm&rft.jtitle=%E6%99%BA%E8%83%BD%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5&rft.au=WANG+Bing&rft.au=SHAN+Ruixue&rft.au=XING+Haiyan&rft.au=LI+Panchi&rft.date=2025-09-01&rft.pub=POSTS%26TELECOM+PRESS+Co.%2C+LTD&rft.issn=2096-6652&rft.volume=7&rft.spage=370&rft.epage=380&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d28ce5ddd6da4cf8b063d1612bc1d8f0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-6652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-6652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-6652&client=summon