A hybrid intelligent algorithm for optimum forecasting of CO 2 emission in complex environments: the cases of Brazil, Canada, France, Japan, India, UK and US

This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and view...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of engineering Vol. 12; no. 3; pp. 237 - 246
Main Authors Azadeh, A., Sheikhalishahi, M., Hasumi, M.
Format Journal Article
LanguageEnglish
Published 23.08.2015
Online AccessGet full text
ISSN1708-5284
DOI10.1260/1708-5284.12.3.237

Cover

Abstract This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and viewpoints. ANN with different training algorithms and transfer functions is also applied to data sets. The proposed hybrid algorithms uses analysis of variance (ANOVA), and mean absolute percentage error (MAPE) to select between ANN, FLR or conventional regression for future CO 2 emission estimation. The intelligent algorithm of this study is then applied to estimate CO 2 emission in seven countries including India, Canada, Brazil, France, Japan, United Kingdom and United States. Different models are selected as preferred model for annual CO 2 emission estimation in these countries. The preferred model for India, Brazil, United Kingdom and United States is selected as FLR whereas the preferred model for CO 2 emission estimation in Japan, Canada and France is ANN. This shows how adopting the proposed hybrid algorithm could help in selecting the preferred model between FLR, ANN and CR in order to cover possible noise, complexity and ambiguity. This is the first study that utilizes a hybrid algorithm based on ANN, FLR and CR for accurate and optimum long term CO 2 emission estimation.
AbstractList This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and viewpoints. ANN with different training algorithms and transfer functions is also applied to data sets. The proposed hybrid algorithms uses analysis of variance (ANOVA), and mean absolute percentage error (MAPE) to select between ANN, FLR or conventional regression for future CO 2 emission estimation. The intelligent algorithm of this study is then applied to estimate CO 2 emission in seven countries including India, Canada, Brazil, France, Japan, United Kingdom and United States. Different models are selected as preferred model for annual CO 2 emission estimation in these countries. The preferred model for India, Brazil, United Kingdom and United States is selected as FLR whereas the preferred model for CO 2 emission estimation in Japan, Canada and France is ANN. This shows how adopting the proposed hybrid algorithm could help in selecting the preferred model between FLR, ANN and CR in order to cover possible noise, complexity and ambiguity. This is the first study that utilizes a hybrid algorithm based on ANN, FLR and CR for accurate and optimum long term CO 2 emission estimation.
Author Sheikhalishahi, M.
Azadeh, A.
Hasumi, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Azadeh
  fullname: Azadeh, A.
– sequence: 2
  givenname: M.
  surname: Sheikhalishahi
  fullname: Sheikhalishahi, M.
– sequence: 3
  givenname: M.
  surname: Hasumi
  fullname: Hasumi, M.
BookMark eNqdj01Ow0AMhWdRJErpBVj5AGnIT2kidhBR8bNgAV2PTDJJjCaeaGZAlLtwVyYIsWDBAm_s96TP9jsSMzashDhJkzjNNslpWiTl6iwr10HGeZzlxUzMf8xDsXTuOQm13mRpkc_FxwX0-ydLDRB7pTV1ij2g7owl3w_QGgtm9DS8fM2qRueJOzAtVPeQgRrIOTIccKjNMGr1BopfyRoewiZ3Dr5XECjlJubS4jvpCCpkbDCCrUWuVQS3OCJHcMMNBXd3B8gN7B6OxUGL2qnld1-IbHv1WF2vamucs6qVo6UB7V6miZzyyymqnKIGKXMZ8ucLUf6CavLow9PeIum_0X_c-wRuMnkv
CitedBy_id crossref_primary_10_1155_2021_6666463
crossref_primary_10_1108_CI_11_2017_0089
crossref_primary_10_3390_su142315595
crossref_primary_10_1007_s11356_024_34817_2
crossref_primary_10_1016_j_apenergy_2024_123924
crossref_primary_10_1007_s00500_023_09004_z
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1260/1708-5284.12.3.237
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 246
ExternalDocumentID 10_1260_1708_5284_12_3_237
GroupedDBID 0R~
1WG
4.4
5VS
AAGBP
AAMCF
AATHL
AAUDR
AAYXX
ABIJV
ABJCF
ABJNI
ABRTZ
ABSDC
ACGFS
ACZLT
ADOMW
ADYJY
AFKRA
AHMHQ
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ASMFL
BENPR
BGLVJ
CCPQU
CITATION
EBS
ECCUG
EJD
FNNZZ
GEI
GQ.
H13
HCIFZ
KBGRL
M7S
MET
O9-
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
ID FETCH-crossref_primary_10_1260_1708_5284_12_3_2373
ISSN 1708-5284
IngestDate Wed Oct 01 05:43:16 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.emerald.com/insight/site-policies
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1260_1708_5284_12_3_2373
ParticipantIDs crossref_citationtrail_10_1260_1708_5284_12_3_237
crossref_primary_10_1260_1708_5284_12_3_237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-8-23
PublicationDateYYYYMMDD 2015-08-23
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-8-23
  day: 23
PublicationDecade 2010
PublicationTitle World journal of engineering
PublicationYear 2015
SSID ssj0000462173
Score 3.8618963
Snippet This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN),...
SourceID crossref
SourceType Index Database
Enrichment Source
StartPage 237
Title A hybrid intelligent algorithm for optimum forecasting of CO 2 emission in complex environments: the cases of Brazil, Canada, France, Japan, India, UK and US
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1708-5284
  databaseCode: BENPR
  dateStart: 20110101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 20241102
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0000462173
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMetUl7gYQI2BAzQPewtaUmdpBTeSgVCQ8C0UYm3yEkcMg3aCVpp9H_hn-Av5OxzXDM2RHmJUiu-JvGn_nG9-5qxLyIWWRruho04k1kjElGAP6mgUFqEPCjyPCi0At_pWfu4H329jC9rtUcnamk8SpvZ5J95Je9pVSzDdlVZsjO0rDWKBXiO7YtHbGE8vqmNu155rzKutOgDCWsqD-7VEFf85Y2OIBxil3Az1ucyE3dVkHPv3OOe2urtzsQ66tBy-edZ4lsV84H1SJr24FZMyGesRQ1ENfM1jngcdymPbJBTCG7_RP83YVQOzRSYwnccxQo5lUS0-E1ELrXDp9u0PqBS_vxVKr3GUuidiL3T5rT_xNfulhk_RitWjllKNTZd7y4WxJw2jLN9M3cYDN2OlqRizJjNyY35YjjAxZryTFSWleM3bNqqrvb2X2OijVRUayS0kigbibKBH5MwQRtzbJ4roOts_uDw7Nt369lT6b4U2mC_2GRroaGdlzfjzIicqc3FEvtg1iTQJcCWWU0OVtiio1T5kT10gVADBzWwqAHiBQY1cFCDYQG9c-BQoYbVwaAGLmr7gKCBBk3VIdB8IMx8IMh80Ij5oAHzoX8CiBf0f3xi_OjwonfcqJ4w-U0iKsn_X2y4yuqD4UCuMWjvybzVCfIsijqRSEVatKXg7SLdC6NOXgTrrGUNZ0bTXm2tcv2K-XXmzXAzGzNd_ZktTNHeZPXR7Vhu4aR1lG4bSp4ATo6Vsw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+intelligent+algorithm+for+optimum+forecasting+of+CO+2+emission+in+complex+environments%3A+the+cases+of+Brazil%2C+Canada%2C+France%2C+Japan%2C+India%2C+UK+and+US&rft.jtitle=World+journal+of+engineering&rft.au=Azadeh%2C+A.&rft.au=Sheikhalishahi%2C+M.&rft.au=Hasumi%2C+M.&rft.date=2015-08-23&rft.issn=1708-5284&rft.volume=12&rft.issue=3&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1260%2F1708-5284.12.3.237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1260_1708_5284_12_3_237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1708-5284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1708-5284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1708-5284&client=summon