A hybrid intelligent algorithm for optimum forecasting of CO 2 emission in complex environments: the cases of Brazil, Canada, France, Japan, India, UK and US
This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and view...
        Saved in:
      
    
          | Published in | World journal of engineering Vol. 12; no. 3; pp. 237 - 246 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        23.08.2015
     | 
| Online Access | Get full text | 
| ISSN | 1708-5284 | 
| DOI | 10.1260/1708-5284.12.3.237 | 
Cover
| Abstract | This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and viewpoints. ANN with different training algorithms and transfer functions is also applied to data sets. The proposed hybrid algorithms uses analysis of variance (ANOVA), and mean absolute percentage error (MAPE) to select between ANN, FLR or conventional regression for future CO 2 emission estimation. The intelligent algorithm of this study is then applied to estimate CO 2 emission in seven countries including India, Canada, Brazil, France, Japan, United Kingdom and United States. Different models are selected as preferred model for annual CO 2 emission estimation in these countries. The preferred model for India, Brazil, United Kingdom and United States is selected as FLR whereas the preferred model for CO 2 emission estimation in Japan, Canada and France is ANN. This shows how adopting the proposed hybrid algorithm could help in selecting the preferred model between FLR, ANN and CR in order to cover possible noise, complexity and ambiguity. This is the first study that utilizes a hybrid algorithm based on ANN, FLR and CR for accurate and optimum long term CO 2 emission estimation. | 
    
|---|---|
| AbstractList | This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN), fuzzy linear regression (FLR), and conventional regression (CR). Different FLR models are considered to cover the latest algorithms and viewpoints. ANN with different training algorithms and transfer functions is also applied to data sets. The proposed hybrid algorithms uses analysis of variance (ANOVA), and mean absolute percentage error (MAPE) to select between ANN, FLR or conventional regression for future CO 2 emission estimation. The intelligent algorithm of this study is then applied to estimate CO 2 emission in seven countries including India, Canada, Brazil, France, Japan, United Kingdom and United States. Different models are selected as preferred model for annual CO 2 emission estimation in these countries. The preferred model for India, Brazil, United Kingdom and United States is selected as FLR whereas the preferred model for CO 2 emission estimation in Japan, Canada and France is ANN. This shows how adopting the proposed hybrid algorithm could help in selecting the preferred model between FLR, ANN and CR in order to cover possible noise, complexity and ambiguity. This is the first study that utilizes a hybrid algorithm based on ANN, FLR and CR for accurate and optimum long term CO 2 emission estimation. | 
    
| Author | Sheikhalishahi, M. Azadeh, A. Hasumi, M.  | 
    
| Author_xml | – sequence: 1 givenname: A. surname: Azadeh fullname: Azadeh, A. – sequence: 2 givenname: M. surname: Sheikhalishahi fullname: Sheikhalishahi, M. – sequence: 3 givenname: M. surname: Hasumi fullname: Hasumi, M.  | 
    
| BookMark | eNqdj01Ow0AMhWdRJErpBVj5AGnIT2kidhBR8bNgAV2PTDJJjCaeaGZAlLtwVyYIsWDBAm_s96TP9jsSMzashDhJkzjNNslpWiTl6iwr10HGeZzlxUzMf8xDsXTuOQm13mRpkc_FxwX0-ydLDRB7pTV1ij2g7owl3w_QGgtm9DS8fM2qRueJOzAtVPeQgRrIOTIccKjNMGr1BopfyRoewiZ3Dr5XECjlJubS4jvpCCpkbDCCrUWuVQS3OCJHcMMNBXd3B8gN7B6OxUGL2qnld1-IbHv1WF2vamucs6qVo6UB7V6miZzyyymqnKIGKXMZ8ucLUf6CavLow9PeIum_0X_c-wRuMnkv | 
    
| CitedBy_id | crossref_primary_10_1155_2021_6666463 crossref_primary_10_1108_CI_11_2017_0089 crossref_primary_10_3390_su142315595 crossref_primary_10_1007_s11356_024_34817_2 crossref_primary_10_1016_j_apenergy_2024_123924 crossref_primary_10_1007_s00500_023_09004_z  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1260/1708-5284.12.3.237 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EndPage | 246 | 
    
| ExternalDocumentID | 10_1260_1708_5284_12_3_237 | 
    
| GroupedDBID | 0R~ 1WG 4.4 5VS AAGBP AAMCF AATHL AAUDR AAYXX ABIJV ABJCF ABJNI ABRTZ ABSDC ACGFS ACZLT ADOMW ADYJY AFKRA AHMHQ AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ASMFL BENPR BGLVJ CCPQU CITATION EBS ECCUG EJD FNNZZ GEI GQ. H13 HCIFZ KBGRL M7S MET O9- PHGZM PHGZT PQGLB PTHSS PUEGO  | 
    
| ID | FETCH-crossref_primary_10_1260_1708_5284_12_3_2373 | 
    
| ISSN | 1708-5284 | 
    
| IngestDate | Wed Oct 01 05:43:16 EDT 2025 Thu Apr 24 22:57:09 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://www.emerald.com/insight/site-policies | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-crossref_primary_10_1260_1708_5284_12_3_2373 | 
    
| ParticipantIDs | crossref_citationtrail_10_1260_1708_5284_12_3_237 crossref_primary_10_1260_1708_5284_12_3_237  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-8-23 | 
    
| PublicationDateYYYYMMDD | 2015-08-23 | 
    
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-8-23 day: 23  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | World journal of engineering | 
    
| PublicationYear | 2015 | 
    
| SSID | ssj0000462173 | 
    
| Score | 3.8618963 | 
    
| Snippet | This study presents a hybrid meta-modeling algorithm for optimum carbon dioxide (CO 2 ) emission estimation. It is composed of artificial neural network (ANN),... | 
    
| SourceID | crossref | 
    
| SourceType | Index Database Enrichment Source  | 
    
| StartPage | 237 | 
    
| Title | A hybrid intelligent algorithm for optimum forecasting of CO 2 emission in complex environments: the cases of Brazil, Canada, France, Japan, India, UK and US | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central issn: 1708-5284 databaseCode: BENPR dateStart: 20110101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 20241102 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0000462173 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fT9swEMetUl7gYQI2BAzQPewtaUmdpBTeSgVCQ8C0UYm3yEkcMg3aCVpp9H_hn-Av5OxzXDM2RHmJUiu-JvGn_nG9-5qxLyIWWRruho04k1kjElGAP6mgUFqEPCjyPCi0At_pWfu4H329jC9rtUcnamk8SpvZ5J95Je9pVSzDdlVZsjO0rDWKBXiO7YtHbGE8vqmNu155rzKutOgDCWsqD-7VEFf85Y2OIBxil3Az1ucyE3dVkHPv3OOe2urtzsQ66tBy-edZ4lsV84H1SJr24FZMyGesRQ1ENfM1jngcdymPbJBTCG7_RP83YVQOzRSYwnccxQo5lUS0-E1ELrXDp9u0PqBS_vxVKr3GUuidiL3T5rT_xNfulhk_RitWjllKNTZd7y4WxJw2jLN9M3cYDN2OlqRizJjNyY35YjjAxZryTFSWleM3bNqqrvb2X2OijVRUayS0kigbibKBH5MwQRtzbJ4roOts_uDw7Nt369lT6b4U2mC_2GRroaGdlzfjzIicqc3FEvtg1iTQJcCWWU0OVtiio1T5kT10gVADBzWwqAHiBQY1cFCDYQG9c-BQoYbVwaAGLmr7gKCBBk3VIdB8IMx8IMh80Ij5oAHzoX8CiBf0f3xi_OjwonfcqJ4w-U0iKsn_X2y4yuqD4UCuMWjvybzVCfIsijqRSEVatKXg7SLdC6NOXgTrrGUNZ0bTXm2tcv2K-XXmzXAzGzNd_ZktTNHeZPXR7Vhu4aR1lG4bSp4ATo6Vsw | 
    
| linkProvider | ProQuest | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+intelligent+algorithm+for+optimum+forecasting+of+CO+2+emission+in+complex+environments%3A+the+cases+of+Brazil%2C+Canada%2C+France%2C+Japan%2C+India%2C+UK+and+US&rft.jtitle=World+journal+of+engineering&rft.au=Azadeh%2C+A.&rft.au=Sheikhalishahi%2C+M.&rft.au=Hasumi%2C+M.&rft.date=2015-08-23&rft.issn=1708-5284&rft.volume=12&rft.issue=3&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1260%2F1708-5284.12.3.237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1260_1708_5284_12_3_237 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1708-5284&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1708-5284&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1708-5284&client=summon |