The BP model based on PSO-GA hybrid algorithm optimization for the calculation of n-alcohol densities
Saved in:
| Published in | Energy (Oxford) Vol. 339; p. 138633 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2025
|
| Online Access | Get full text |
| ISSN | 0360-5442 |
| DOI | 10.1016/j.energy.2025.138633 |
Cover
| ArticleNumber | 138633 |
|---|---|
| Author | Qi, Yonggang Fang, Lide Peng, Chengyuan Dai, Chenkai Liu, Jidong Wang, Xiaojie Wang, Jing |
| Author_xml | – sequence: 1 givenname: Xiaojie surname: Wang fullname: Wang, Xiaojie – sequence: 2 givenname: Chenkai surname: Dai fullname: Dai, Chenkai – sequence: 3 givenname: Chengyuan surname: Peng fullname: Peng, Chengyuan – sequence: 4 givenname: Jidong surname: Liu fullname: Liu, Jidong – sequence: 5 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 6 givenname: Yonggang surname: Qi fullname: Qi, Yonggang – sequence: 7 givenname: Lide orcidid: 0000-0002-5714-1598 surname: Fang fullname: Fang, Lide |
| BookMark | eNqdj01OwzAQhb0oEi1wAxZzgYRxnETtEhA_Oyq1e8tNJo0jx1PZZhFOT6pwAlZP7-l9i28jVp49CfEoMZco66chJ0_hPOUFFlUu1bZWaiXWqGrMqrIsbsUmxgERq-1utxZ07Ale9jBySw5OJlIL7GF_-Mo-nqGfTsG2YNyZg039CHxJdrQ_Jtn51HGANOONcc23WzbuwGdz554dtOSjTZbivbjpjIv08Jd3onx_O75-Zk3gGAN1-hLsaMKkJeqrhh70oqGvGnrRUP_EfgHOt1ko |
| Cites_doi | 10.1016/j.fuel.2018.08.138 10.1007/s10462-011-9208-z 10.1063/5.0268946 10.1007/BF00514483 10.4271/2008-01-1379 10.1016/j.fuel.2017.06.043 10.1016/j.jct.2020.106263 10.1016/j.tca.2012.10.022 10.1016/j.jct.2021.106404 10.1021/acs.jced.6b00834 10.1016/B978-0-323-85836-6.00009-0 10.1021/je300632p 10.1007/BF00508889 10.1007/BF02575339 10.1039/D2CP05423J 10.1016/j.eswa.2010.07.099 10.1007/BF01439248 10.1021/acs.jced.8b00812 10.1109/TNN.2004.836241 10.1016/j.egyr.2019.04.009 10.1016/j.apcata.2011.07.021 10.1021/je800497u 10.1007/s10765-005-8089-2 10.1007/s11270-022-05771-x 10.1021/acs.jced.0c00845 10.1016/j.fluid.2020.112559 10.1016/j.neucom.2012.10.043 10.1016/S0893-6080(03)00169-2 10.1021/je501133u 10.1016/j.proeng.2013.03.087 10.1016/j.fluid.2021.113206 10.1109/TNN.2002.804317 10.1021/je00017a042 10.1023/A:1020785816403 10.1080/00319100412331284422 10.1007/s00521-013-1522-8 10.1016/j.expthermflusci.2024.111403 10.1007/BF00515199 10.1021/je00011a010 10.1016/j.molliq.2024.124134 10.1016/j.enpol.2007.04.003 10.1016/j.neucom.2013.04.016 10.1016/j.gerr.2025.100120 10.1016/j.molliq.2006.12.019 10.1016/j.fluid.2022.113674 10.1016/j.tca.2013.01.038 10.1021/acs.jced.8b00992 10.3109/10826089809115863 10.1016/j.fuel.2021.121085 10.1021/acs.jced.8b00979 10.1007/BF00502362 10.3390/w15234117 10.25271/2017.5.4.381 10.1016/j.enconman.2018.06.089 10.33263/BRIAC124.56255637 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.energy.2025.138633 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2025_138633 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- ~HD |
| ID | FETCH-crossref_primary_10_1016_j_energy_2025_1386333 |
| ISSN | 0360-5442 |
| IngestDate | Wed Oct 29 21:27:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-crossref_primary_10_1016_j_energy_2025_1386333 |
| ORCID | 0000-0002-5714-1598 |
| ParticipantIDs | crossref_primary_10_1016_j_energy_2025_138633 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| References | Zheng (10.1016/j.energy.2025.138633_bib2) 2022; 111 Moosavi (10.1016/j.energy.2025.138633_bib24) 2013; 556 Liu (10.1016/j.energy.2025.138633_bib61) 2009; vol. 1 Ding (10.1016/j.energy.2025.138633_bib55) 2014; 25 Tanaka (10.1016/j.energy.2025.138633_bib33) 1987; 8 Zéberg-Mikkelsen (10.1016/j.energy.2025.138633_bib37) 2005; 26 Ardebili (10.1016/j.energy.2025.138633_bib9) 2020; 279 Ra (10.1016/j.energy.2025.138633_bib12) 2009; 1 Matsuo (10.1016/j.energy.2025.138633_bib38) 1991; 12 Cheng (10.1016/j.energy.2025.138633_bib27) 2022; 233 Leung (10.1016/j.energy.2025.138633_bib64) 2003; 14 Eesa (10.1016/j.energy.2025.138633_bib52) 2017; 5 Saleh (10.1016/j.energy.2025.138633_bib48) 2004; 42 Jirasek (10.1016/j.energy.2025.138633_bib21) 2021; 549 Wu (10.1016/j.energy.2025.138633_bib30) 2015; 148 Sivanandam (10.1016/j.energy.2025.138633_bib62) 2008 Sahu (10.1016/j.energy.2025.138633_bib7) 2022; 44 Papaioannou (10.1016/j.energy.2025.138633_bib36) 1995; 40 Ungerer (10.1016/j.energy.2025.138633_bib17) 2007; 134 Huang (10.1016/j.energy.2025.138633_bib53) 2005; 16 Wang (10.1016/j.energy.2025.138633_bib29) 2013; 120 Qing (10.1016/j.energy.2025.138633_bib28) 2024; 13176 Haghbakhsh (10.1016/j.energy.2025.138633_bib22) 2013; 551 Pinto (10.1016/j.energy.2025.138633_bib49) 2019; 64 Fu (10.1016/j.energy.2025.138633_bib66) 2021; 152 Falcone (10.1016/j.energy.2025.138633_bib15) 2009; 54 Jbari (10.1016/j.energy.2025.138633_bib25) 2021; 12 Pierantozzi (10.1016/j.energy.2025.138633_bib23) 2024; 397 Sülzner (10.1016/j.energy.2025.138633_bib43) 1997; 18 Pimentel-Rodas (10.1016/j.energy.2025.138633_bib42) 2018; 64 Matsuo (10.1016/j.energy.2025.138633_bib65) 1989; 10 Carvalho (10.1016/j.energy.2025.138633_bib63) 2007 Jamei (10.1016/j.energy.2025.138633_bib19) 2022; 1 Moreau Ortega (10.1016/j.energy.2025.138633_bib40) 2021; 344 Papaioannou (10.1016/j.energy.2025.138633_bib35) 1993; 38 Pham (10.1016/j.energy.2025.138633_bib16) 2017; 206 Cano-Gómez (10.1016/j.energy.2025.138633_bib44) 2019; 64 Shaahmadi (10.1016/j.energy.2025.138633_bib20) 2023; 565 Wang (10.1016/j.energy.2025.138633_bib46) 2021; 157 Surisetty (10.1016/j.energy.2025.138633_bib6) 2011; 404 Ding (10.1016/j.energy.2025.138633_bib60) 2011; 36 Hassan (10.1016/j.energy.2025.138633_bib1) 2013; 56 Isdale (10.1016/j.energy.2025.138633_bib34) 1985; 6 Assael (10.1016/j.energy.2025.138633_bib32) 1994; 15 Fu (10.1016/j.energy.2025.138633_bib51) 2020; 66 Cherkassky (10.1016/j.energy.2025.138633_bib54) 2004; 17 Buscema (10.1016/j.energy.2025.138633_bib56) 1998; 33 Rohani (10.1016/j.energy.2025.138633_bib26) 2011; 38 Audonnet (10.1016/j.energy.2025.138633_bib45) 2002; 23 Liu (10.1016/j.energy.2025.138633_bib13) 2018; 171 Guzmán-López (10.1016/j.energy.2025.138633_bib47) 2017; 62 Demirbas (10.1016/j.energy.2025.138633_bib14) 2007; 35 Cano-Gómez (10.1016/j.energy.2025.138633_bib41) 2012; 57 Mamat (10.1016/j.energy.2025.138633_bib10) 2019; 5 Krishnasamy (10.1016/j.energy.2025.138633_bib18) 2021; 302 Çelebi (10.1016/j.energy.2025.138633_bib8) 2019; 236 Tillotson (10.1016/j.energy.2025.138633_bib11) 2023; 25 Chang (10.1016/j.energy.2025.138633_bib5) 2025; 163 Han (10.1016/j.energy.2025.138633_bib58) 1995 Mendo-Sánchez (10.1016/j.energy.2025.138633_bib67) 2020; 514 Zhai (10.1016/j.energy.2025.138633_bib3) 2025; 3 Castrejon-Gonzalez (10.1016/j.energy.2025.138633_bib39) 2015; 60 Hussein (10.1016/j.energy.2025.138633_bib50) 2009; 54 Li (10.1016/j.energy.2025.138633_bib57) 2012; vol. 2 Guo (10.1016/j.energy.2025.138633_bib59) 2006 An (10.1016/j.energy.2025.138633_bib4) 2025; 37 Dai (10.1016/j.energy.2025.138633_bib31) 2023; 15 |
| References_xml | – volume: 236 start-page: 890 year: 2019 ident: 10.1016/j.energy.2025.138633_bib8 article-title: An overview on the light alcohol fuels in diesel engines publication-title: Fuel doi: 10.1016/j.fuel.2018.08.138 – volume: vol. 1 start-page: 300 year: 2009 ident: 10.1016/j.energy.2025.138633_bib61 – volume: 36 start-page: 153 year: 2011 ident: 10.1016/j.energy.2025.138633_bib60 article-title: An optimizing BP neural network algorithm based on genetic algorithm publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9208-z – volume: 37 issue: 6 year: 2025 ident: 10.1016/j.energy.2025.138633_bib4 article-title: Threshold sensitivity study on spray-spray impingement under flexible injection strategy for fuel/air mixture evaluation publication-title: Phys Fluids doi: 10.1063/5.0268946 – volume: 54 start-page: 251 year: 2009 ident: 10.1016/j.energy.2025.138633_bib15 article-title: Heavy oil metering applications publication-title: Dev Petr Sci – volume: 10 start-page: 885 issue: 4 year: 1989 ident: 10.1016/j.energy.2025.138633_bib65 article-title: Volumetric properties of 1-alkanols at temperatures in the range 298–348 K and pressures up to 40 MPa publication-title: Int J Thermophys doi: 10.1007/BF00514483 – volume: 1 start-page: 703 issue: 1 year: 2009 ident: 10.1016/j.energy.2025.138633_bib12 article-title: Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels publication-title: SAE International Journal of Fuels and Lubricants doi: 10.4271/2008-01-1379 – volume: 206 start-page: 701 year: 2017 ident: 10.1016/j.energy.2025.138633_bib16 article-title: Development of fuel metering techniques for spark ignition engines publication-title: Fuel doi: 10.1016/j.fuel.2017.06.043 – volume: 152 year: 2021 ident: 10.1016/j.energy.2025.138633_bib66 article-title: Measurements of density and viscosity of 1-hexadecanol in the temperature range from (328.15 to 623.15) K at pressures up to 10 MPa publication-title: J Chem Therm doi: 10.1016/j.jct.2020.106263 – volume: 551 start-page: 124 year: 2013 ident: 10.1016/j.energy.2025.138633_bib22 article-title: Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions publication-title: Thermochim Acta doi: 10.1016/j.tca.2012.10.022 – volume: 157 year: 2021 ident: 10.1016/j.energy.2025.138633_bib46 article-title: Densities and viscosities for binary mixtures of dimethyl carbonate with 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol publication-title: J Chem Therm doi: 10.1016/j.jct.2021.106404 – volume: 13176 start-page: 95 year: 2024 ident: 10.1016/j.energy.2025.138633_bib28 article-title: SF6 gas concentration prediction model based on PSO-BP and PSO-RBF algorithms – volume: 62 start-page: 780 year: 2017 ident: 10.1016/j.energy.2025.138633_bib47 article-title: Densities and viscosities for binary liquid mixtures of n-undecane+1-heptanol, 1-octanol, 1-nonanol, and 1-decanol from 283.15 to 363.15 K at 0.1 MPa publication-title: J Chem Eng Data doi: 10.1021/acs.jced.6b00834 – start-page: 336 year: 2007 ident: 10.1016/j.energy.2025.138633_bib63 article-title: Particle swarm optimization of neural network architectures andweights – volume: 1 start-page: 203 year: 2022 ident: 10.1016/j.energy.2025.138633_bib19 article-title: Recent advances in the prediction of thermophysical properties of nanofluids using artificial intelligence publication-title: Hybrid Nanofluids doi: 10.1016/B978-0-323-85836-6.00009-0 – volume: 57 start-page: 2560 year: 2012 ident: 10.1016/j.energy.2025.138633_bib41 article-title: Densities and viscosities for binary liquid mixtures of ethanol + 1-propanol, 1-butanol, and 1-pentanol from (293.15 to 328.15) K at 0.1 MPa publication-title: J Chem Eng Data doi: 10.1021/je300632p – volume: 6 start-page: 439 year: 1985 ident: 10.1016/j.energy.2025.138633_bib34 article-title: Shear viscosity of methanol and methanol + water mixtures under pressure publication-title: Int J Thermophys doi: 10.1007/BF00508889 – start-page: 165 year: 2008 ident: 10.1016/j.energy.2025.138633_bib62 – volume: 18 start-page: 1355 issue: 6 year: 1997 ident: 10.1016/j.energy.2025.138633_bib43 article-title: Effect of hydrogen bonding on the viscosity of alcohols at high pressures publication-title: Int J Thermophys doi: 10.1007/BF02575339 – volume: 25 start-page: 12607 issue: 18 year: 2023 ident: 10.1016/j.energy.2025.138633_bib11 article-title: Molecular modelling of the thermophysical properties of fluids: expectations, limitations, gaps and opportunities publication-title: Phys Chem Chem Phys doi: 10.1039/D2CP05423J – volume: 38 start-page: 1738 year: 2011 ident: 10.1016/j.energy.2025.138633_bib26 article-title: Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.07.099 – volume: 15 start-page: 95 year: 1994 ident: 10.1016/j.energy.2025.138633_bib32 article-title: Measurements of the viscosity of alcohols in the temperature range 290-340K at pressures up to 30MPa publication-title: Int J Thermophys doi: 10.1007/BF01439248 – volume: 344 year: 2021 ident: 10.1016/j.energy.2025.138633_bib40 article-title: Viscosities and densities of different alcohols (1-propanol, 2-propanol, 1-pentanol and 2-pentanol) at high pressures publication-title: J Mol Liq – volume: 64 start-page: 324 year: 2018 ident: 10.1016/j.energy.2025.138633_bib42 article-title: Viscosity and density of n -alcohols at temperatures between (298.15 and 323.15) K and pressures up to 30 MPa publication-title: J Chem Eng Data doi: 10.1021/acs.jced.8b00812 – volume: 16 start-page: 57 year: 2005 ident: 10.1016/j.energy.2025.138633_bib53 article-title: Sundararajan NA generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation publication-title: IEEE Trans Neural Network doi: 10.1109/TNN.2004.836241 – volume: 5 start-page: 467 year: 2019 ident: 10.1016/j.energy.2025.138633_bib10 article-title: An overview of Higher alcohol and biodiesel as alternative fuels in engines publication-title: Energy Rep doi: 10.1016/j.egyr.2019.04.009 – volume: 404 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.energy.2025.138633_bib6 article-title: Alcohols as alternative fuels: an overview publication-title: Appl Catal Gen doi: 10.1016/j.apcata.2011.07.021 – volume: 54 start-page: 2948 year: 2009 ident: 10.1016/j.energy.2025.138633_bib50 article-title: Densities and kinematic viscosities of ten binary 1Alkanol liquid systems at temperatures of (293.15 and 298.15) K publication-title: J Chem Eng Data doi: 10.1021/je800497u – volume: 26 start-page: 1289 year: 2005 ident: 10.1016/j.energy.2025.138633_bib37 article-title: High-pressure viscosity measurements for the ethanol + toluene binary system publication-title: Int J Thermophys doi: 10.1007/s10765-005-8089-2 – volume: 233 start-page: 354 issue: 8 year: 2022 ident: 10.1016/j.energy.2025.138633_bib27 article-title: Using genetic algorithm and particle swarm optimization BP neural network algorithm to improve marine oil spill prediction publication-title: Water, Air, Soil Pollut doi: 10.1007/s11270-022-05771-x – volume: 66 start-page: 712 year: 2020 ident: 10.1016/j.energy.2025.138633_bib51 article-title: Density and viscosity measurements of 1-dodecanol and 1,12-dodecanediol at temperatures of up to 573.15 K and pressures of up to 10 MPa publication-title: J Chem Eng Data doi: 10.1021/acs.jced.0c00845 – volume: 514 year: 2020 ident: 10.1016/j.energy.2025.138633_bib67 article-title: Simultaneous viscosity and density measurements and modeling of 2-alcohols at temperatures between (291 and 353) K and pressures up to 50 MPa publication-title: Fluid Phase Equilib doi: 10.1016/j.fluid.2020.112559 – volume: 111 year: 2022 ident: 10.1016/j.energy.2025.138633_bib2 article-title: Advanced ignition strategies for gasoline engine clean combustion – volume: 279 year: 2020 ident: 10.1016/j.energy.2025.138633_bib9 article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential publication-title: Fuel – volume: 148 start-page: 136 year: 2015 ident: 10.1016/j.energy.2025.138633_bib30 article-title: Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.043 – volume: 17 start-page: 113 year: 2004 ident: 10.1016/j.energy.2025.138633_bib54 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00169-2 – volume: 60 start-page: 1945 year: 2015 ident: 10.1016/j.energy.2025.138633_bib39 article-title: Density and viscosity of binary liquid mixtures of ethanol+1-hexanol and ethanol+1-heptanol from (293.15 to 328.15) K at 0.1 MPa publication-title: J Chem Eng Data doi: 10.1021/je501133u – volume: vol. 2 start-page: 553 year: 2012 ident: 10.1016/j.energy.2025.138633_bib57 – volume: 56 start-page: 39 year: 2013 ident: 10.1016/j.energy.2025.138633_bib1 article-title: An overview of biofuel as a renewable energy source: development and challenges publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.03.087 – volume: 549 year: 2021 ident: 10.1016/j.energy.2025.138633_bib21 article-title: Perspective: machine learning of thermophysical properties publication-title: Fluid Phase Equilib doi: 10.1016/j.fluid.2021.113206 – volume: 44 start-page: 8736 issue: 4 year: 2022 ident: 10.1016/j.energy.2025.138633_bib7 article-title: Alcohols as alternative fuels in compression ignition engines for sustainable transportation: a review publication-title: Energy Sources, Part A Recovery, Util Environ Eff – volume: 14 start-page: 79 year: 2003 ident: 10.1016/j.energy.2025.138633_bib64 article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm publication-title: IEEE Trans Neural Network doi: 10.1109/TNN.2002.804317 – volume: 40 start-page: 202 year: 1995 ident: 10.1016/j.energy.2025.138633_bib36 article-title: Viscosity of binary mixtures of propylamine with alkanols at moderately high pressures publication-title: J Chem Eng Data doi: 10.1021/je00017a042 – volume: 23 start-page: 1537 year: 2002 ident: 10.1016/j.energy.2025.138633_bib45 article-title: Density and viscosity of mixtures of n-Hexane and 1-hexanol from 303 to 423 K up to 50 MPa publication-title: Int J Thermophys doi: 10.1023/A:1020785816403 – start-page: 195 year: 1995 ident: 10.1016/j.energy.2025.138633_bib58 – volume: 42 start-page: 615 year: 2004 ident: 10.1016/j.energy.2025.138633_bib48 article-title: Density and viscosity of 1-alkanols publication-title: Phys Chem Liq doi: 10.1080/00319100412331284422 – volume: 25 start-page: 549 year: 2014 ident: 10.1016/j.energy.2025.138633_bib55 article-title: Extreme learning machine and its applications publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1522-8 – volume: 163 year: 2025 ident: 10.1016/j.energy.2025.138633_bib5 article-title: Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2024.111403 – volume: 8 start-page: 147 year: 1987 ident: 10.1016/j.energy.2025.138633_bib33 article-title: Viscosity of (water+alcohol) mixtures under high pressure publication-title: Int J Thermophys doi: 10.1007/BF00515199 – volume: 38 start-page: 370 year: 1993 ident: 10.1016/j.energy.2025.138633_bib35 article-title: Excess dynamic viscosity and excess volume of N-butylamine + 1-alkanol mixtures at moderately high pressures publication-title: J Chem Eng Data doi: 10.1021/je00011a010 – volume: 397 year: 2024 ident: 10.1016/j.energy.2025.138633_bib23 article-title: Density and viscosity modeling of liquid adipates using neural network approaches publication-title: J Mol Liq doi: 10.1016/j.molliq.2024.124134 – volume: 35 start-page: 4661 issue: 9 year: 2007 ident: 10.1016/j.energy.2025.138633_bib14 article-title: Importance of biodiesel as transportation fuel publication-title: Energy Policy doi: 10.1016/j.enpol.2007.04.003 – volume: 120 start-page: 547 year: 2013 ident: 10.1016/j.energy.2025.138633_bib29 article-title: A hybrid optimization-based recurrent neural network for real-time data prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.016 – volume: 3 issue: 1 year: 2025 ident: 10.1016/j.energy.2025.138633_bib3 article-title: Comparative analysis and normalization of single-hole vs. multi-hole spray characteristics: 1st report on spray characteristic comparison publication-title: Green Energy and Resources doi: 10.1016/j.gerr.2025.100120 – start-page: 617 year: 2006 ident: 10.1016/j.energy.2025.138633_bib59 article-title: BP neural network optimized with PSO algorithm and its application in forecasting – volume: 134 start-page: 71 year: 2007 ident: 10.1016/j.energy.2025.138633_bib17 article-title: Molecular simulation of the thermophysical properties of fluids: from understanding toward quantitative predictions publication-title: J Mol Liq doi: 10.1016/j.molliq.2006.12.019 – volume: 565 year: 2023 ident: 10.1016/j.energy.2025.138633_bib20 article-title: Group-contribution SAFT equations of state: a review publication-title: Fluid Phase Equilib doi: 10.1016/j.fluid.2022.113674 – volume: 556 start-page: 89 year: 2013 ident: 10.1016/j.energy.2025.138633_bib24 article-title: Prediction of hydrocarbon densities using an artificial neural network-group contribution method up to high temperatures and pressures publication-title: Thermochim Acta doi: 10.1016/j.tca.2013.01.038 – volume: 64 start-page: 1937 year: 2019 ident: 10.1016/j.energy.2025.138633_bib49 article-title: Viscosities and densities of fatty alcohol mixtures from 298.15 to 338.15 K: estimation by Kay's rule and prediction by the UNIFAC-VISCO and GC-UNIMOD group contribution methods publication-title: J Chem Eng Data doi: 10.1021/acs.jced.8b00992 – volume: 33 start-page: 233 year: 1998 ident: 10.1016/j.energy.2025.138633_bib56 article-title: Back propagation neural networks publication-title: Subst Use Misuse doi: 10.3109/10826089809115863 – volume: 302 year: 2021 ident: 10.1016/j.energy.2025.138633_bib18 article-title: A comprehensive review of biodiesel property prediction models for combustion modeling studies publication-title: Fuel doi: 10.1016/j.fuel.2021.121085 – volume: 64 start-page: 1922 year: 2019 ident: 10.1016/j.energy.2025.138633_bib44 article-title: Densities and viscosities for binary liquid mixtures of pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa publication-title: J Chem Eng Data doi: 10.1021/acs.jced.8b00979 – volume: 12 start-page: 459 issue: 3 year: 1991 ident: 10.1016/j.energy.2025.138633_bib38 article-title: Viscosity of methanol and 2-methyl-2-propanol mixtures under high pressures publication-title: Int J Thermophys doi: 10.1007/BF00502362 – volume: 15 start-page: 4117 issue: 23 year: 2023 ident: 10.1016/j.energy.2025.138633_bib31 article-title: A prediction model of coal seam roof water abundance based on PSO-GA-BP neural network publication-title: Water doi: 10.3390/w15234117 – volume: 5 start-page: 319 year: 2017 ident: 10.1016/j.energy.2025.138633_bib52 article-title: A normalization method for backpropagation: a comparative study publication-title: Sci J Univ Zakho doi: 10.25271/2017.5.4.381 – volume: 171 start-page: 1787 year: 2018 ident: 10.1016/j.energy.2025.138633_bib13 article-title: Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.06.089 – volume: 12 start-page: 5625 year: 2021 ident: 10.1016/j.energy.2025.138633_bib25 article-title: Liquid density prediction of ethanol/water, using artificial neural network publication-title: Biointerface Res Appl Chem doi: 10.33263/BRIAC124.56255637 |
| SSID | ssj0005899 |
| Score | 4.9617605 |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 138633 |
| Title | The BP model based on PSO-GA hybrid algorithm optimization for the calculation of n-alcohol densities |
| Volume | 339 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF20HvQiWhW_2YO3kNAmu209tvULQS2o2FtIshubahOxKVgP_nZnd5NNtCLWSyjLMkk6j5nN8N4MQkfM5rzp2Mysh9Q3SUhapm_XQhOSs8dqnNeDhhAnX103Lu7JZZ_2C0qQVJekvhW8_6gr-Y9XYQ38KlSyc3hWG4UF-A3-hSt4GK5_9nGnp6bZGCIfMVH7793emOdtYzAVYizDe35MXqN0MDISiA6jTHap2YXgoiCb4CU5HaanZuYaTDDb05ximNfulVJQtCh9U6x4XUd4yArP_chLhpGGy4kad90d8PjJi4pArDaL5cfppMQLiiYSVxFLspSaVSRsWmJ35EqsmkkJ-RJlHdWzKIuTdafVUA0wZkK4qiYMLS7fyBI3sIrtXztmf8tkml-YU9eGrrLiCiuusrKIlmzIAGLMh_VRogO15KxR_ey5zFJyAWefpXSMKZ1H7tbQavYhgdsKFetogcdVtJzrzMdVtHVaaBhhYxbExxuIA2xwp4clbLCEDU5irGCDFWywhg0uwwaD0zHABpdgg5MQa9hgDZtNRM5O77oXZv4C7otqbOL-9rc5W6gSJzHfRpgwnzqM-U3foSQg1DvmnMLJkIU0OG559g6az_TunPv30EoBu31USV8n_ACOhql_KH36CXlSabE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+BP+model+based+on+PSO-GA+hybrid+algorithm+optimization+for+the+calculation+of+n-alcohol+densities&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Xiaojie&rft.au=Dai%2C+Chenkai&rft.au=Peng%2C+Chengyuan&rft.au=Liu%2C+Jidong&rft.date=2025-12-01&rft.issn=0360-5442&rft.volume=339&rft.spage=138633&rft_id=info:doi/10.1016%2Fj.energy.2025.138633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_138633 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |