The BP model based on PSO-GA hybrid algorithm optimization for the calculation of n-alcohol densities

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 339; p. 138633
Main Authors Wang, Xiaojie, Dai, Chenkai, Peng, Chengyuan, Liu, Jidong, Wang, Jing, Qi, Yonggang, Fang, Lide
Format Journal Article
LanguageEnglish
Published 01.12.2025
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2025.138633

Cover

ArticleNumber 138633
Author Qi, Yonggang
Fang, Lide
Peng, Chengyuan
Dai, Chenkai
Liu, Jidong
Wang, Xiaojie
Wang, Jing
Author_xml – sequence: 1
  givenname: Xiaojie
  surname: Wang
  fullname: Wang, Xiaojie
– sequence: 2
  givenname: Chenkai
  surname: Dai
  fullname: Dai, Chenkai
– sequence: 3
  givenname: Chengyuan
  surname: Peng
  fullname: Peng, Chengyuan
– sequence: 4
  givenname: Jidong
  surname: Liu
  fullname: Liu, Jidong
– sequence: 5
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 6
  givenname: Yonggang
  surname: Qi
  fullname: Qi, Yonggang
– sequence: 7
  givenname: Lide
  orcidid: 0000-0002-5714-1598
  surname: Fang
  fullname: Fang, Lide
BookMark eNqdj01OwzAQhb0oEi1wAxZzgYRxnETtEhA_Oyq1e8tNJo0jx1PZZhFOT6pwAlZP7-l9i28jVp49CfEoMZco66chJ0_hPOUFFlUu1bZWaiXWqGrMqrIsbsUmxgERq-1utxZ07Ale9jBySw5OJlIL7GF_-Mo-nqGfTsG2YNyZg039CHxJdrQ_Jtn51HGANOONcc23WzbuwGdz554dtOSjTZbivbjpjIv08Jd3onx_O75-Zk3gGAN1-hLsaMKkJeqrhh70oqGvGnrRUP_EfgHOt1ko
Cites_doi 10.1016/j.fuel.2018.08.138
10.1007/s10462-011-9208-z
10.1063/5.0268946
10.1007/BF00514483
10.4271/2008-01-1379
10.1016/j.fuel.2017.06.043
10.1016/j.jct.2020.106263
10.1016/j.tca.2012.10.022
10.1016/j.jct.2021.106404
10.1021/acs.jced.6b00834
10.1016/B978-0-323-85836-6.00009-0
10.1021/je300632p
10.1007/BF00508889
10.1007/BF02575339
10.1039/D2CP05423J
10.1016/j.eswa.2010.07.099
10.1007/BF01439248
10.1021/acs.jced.8b00812
10.1109/TNN.2004.836241
10.1016/j.egyr.2019.04.009
10.1016/j.apcata.2011.07.021
10.1021/je800497u
10.1007/s10765-005-8089-2
10.1007/s11270-022-05771-x
10.1021/acs.jced.0c00845
10.1016/j.fluid.2020.112559
10.1016/j.neucom.2012.10.043
10.1016/S0893-6080(03)00169-2
10.1021/je501133u
10.1016/j.proeng.2013.03.087
10.1016/j.fluid.2021.113206
10.1109/TNN.2002.804317
10.1021/je00017a042
10.1023/A:1020785816403
10.1080/00319100412331284422
10.1007/s00521-013-1522-8
10.1016/j.expthermflusci.2024.111403
10.1007/BF00515199
10.1021/je00011a010
10.1016/j.molliq.2024.124134
10.1016/j.enpol.2007.04.003
10.1016/j.neucom.2013.04.016
10.1016/j.gerr.2025.100120
10.1016/j.molliq.2006.12.019
10.1016/j.fluid.2022.113674
10.1016/j.tca.2013.01.038
10.1021/acs.jced.8b00992
10.3109/10826089809115863
10.1016/j.fuel.2021.121085
10.1021/acs.jced.8b00979
10.1007/BF00502362
10.3390/w15234117
10.25271/2017.5.4.381
10.1016/j.enconman.2018.06.089
10.33263/BRIAC124.56255637
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.138633
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_138633
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
~HD
ID FETCH-crossref_primary_10_1016_j_energy_2025_1386333
ISSN 0360-5442
IngestDate Wed Oct 29 21:27:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-crossref_primary_10_1016_j_energy_2025_1386333
ORCID 0000-0002-5714-1598
ParticipantIDs crossref_primary_10_1016_j_energy_2025_138633
PublicationCentury 2000
PublicationDate 2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-00
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
References Zheng (10.1016/j.energy.2025.138633_bib2) 2022; 111
Moosavi (10.1016/j.energy.2025.138633_bib24) 2013; 556
Liu (10.1016/j.energy.2025.138633_bib61) 2009; vol. 1
Ding (10.1016/j.energy.2025.138633_bib55) 2014; 25
Tanaka (10.1016/j.energy.2025.138633_bib33) 1987; 8
Zéberg-Mikkelsen (10.1016/j.energy.2025.138633_bib37) 2005; 26
Ardebili (10.1016/j.energy.2025.138633_bib9) 2020; 279
Ra (10.1016/j.energy.2025.138633_bib12) 2009; 1
Matsuo (10.1016/j.energy.2025.138633_bib38) 1991; 12
Cheng (10.1016/j.energy.2025.138633_bib27) 2022; 233
Leung (10.1016/j.energy.2025.138633_bib64) 2003; 14
Eesa (10.1016/j.energy.2025.138633_bib52) 2017; 5
Saleh (10.1016/j.energy.2025.138633_bib48) 2004; 42
Jirasek (10.1016/j.energy.2025.138633_bib21) 2021; 549
Wu (10.1016/j.energy.2025.138633_bib30) 2015; 148
Sivanandam (10.1016/j.energy.2025.138633_bib62) 2008
Sahu (10.1016/j.energy.2025.138633_bib7) 2022; 44
Papaioannou (10.1016/j.energy.2025.138633_bib36) 1995; 40
Ungerer (10.1016/j.energy.2025.138633_bib17) 2007; 134
Huang (10.1016/j.energy.2025.138633_bib53) 2005; 16
Wang (10.1016/j.energy.2025.138633_bib29) 2013; 120
Qing (10.1016/j.energy.2025.138633_bib28) 2024; 13176
Haghbakhsh (10.1016/j.energy.2025.138633_bib22) 2013; 551
Pinto (10.1016/j.energy.2025.138633_bib49) 2019; 64
Fu (10.1016/j.energy.2025.138633_bib66) 2021; 152
Falcone (10.1016/j.energy.2025.138633_bib15) 2009; 54
Jbari (10.1016/j.energy.2025.138633_bib25) 2021; 12
Pierantozzi (10.1016/j.energy.2025.138633_bib23) 2024; 397
Sülzner (10.1016/j.energy.2025.138633_bib43) 1997; 18
Pimentel-Rodas (10.1016/j.energy.2025.138633_bib42) 2018; 64
Matsuo (10.1016/j.energy.2025.138633_bib65) 1989; 10
Carvalho (10.1016/j.energy.2025.138633_bib63) 2007
Jamei (10.1016/j.energy.2025.138633_bib19) 2022; 1
Moreau Ortega (10.1016/j.energy.2025.138633_bib40) 2021; 344
Papaioannou (10.1016/j.energy.2025.138633_bib35) 1993; 38
Pham (10.1016/j.energy.2025.138633_bib16) 2017; 206
Cano-Gómez (10.1016/j.energy.2025.138633_bib44) 2019; 64
Shaahmadi (10.1016/j.energy.2025.138633_bib20) 2023; 565
Wang (10.1016/j.energy.2025.138633_bib46) 2021; 157
Surisetty (10.1016/j.energy.2025.138633_bib6) 2011; 404
Ding (10.1016/j.energy.2025.138633_bib60) 2011; 36
Hassan (10.1016/j.energy.2025.138633_bib1) 2013; 56
Isdale (10.1016/j.energy.2025.138633_bib34) 1985; 6
Assael (10.1016/j.energy.2025.138633_bib32) 1994; 15
Fu (10.1016/j.energy.2025.138633_bib51) 2020; 66
Cherkassky (10.1016/j.energy.2025.138633_bib54) 2004; 17
Buscema (10.1016/j.energy.2025.138633_bib56) 1998; 33
Rohani (10.1016/j.energy.2025.138633_bib26) 2011; 38
Audonnet (10.1016/j.energy.2025.138633_bib45) 2002; 23
Liu (10.1016/j.energy.2025.138633_bib13) 2018; 171
Guzmán-López (10.1016/j.energy.2025.138633_bib47) 2017; 62
Demirbas (10.1016/j.energy.2025.138633_bib14) 2007; 35
Cano-Gómez (10.1016/j.energy.2025.138633_bib41) 2012; 57
Mamat (10.1016/j.energy.2025.138633_bib10) 2019; 5
Krishnasamy (10.1016/j.energy.2025.138633_bib18) 2021; 302
Çelebi (10.1016/j.energy.2025.138633_bib8) 2019; 236
Tillotson (10.1016/j.energy.2025.138633_bib11) 2023; 25
Chang (10.1016/j.energy.2025.138633_bib5) 2025; 163
Han (10.1016/j.energy.2025.138633_bib58) 1995
Mendo-Sánchez (10.1016/j.energy.2025.138633_bib67) 2020; 514
Zhai (10.1016/j.energy.2025.138633_bib3) 2025; 3
Castrejon-Gonzalez (10.1016/j.energy.2025.138633_bib39) 2015; 60
Hussein (10.1016/j.energy.2025.138633_bib50) 2009; 54
Li (10.1016/j.energy.2025.138633_bib57) 2012; vol. 2
Guo (10.1016/j.energy.2025.138633_bib59) 2006
An (10.1016/j.energy.2025.138633_bib4) 2025; 37
Dai (10.1016/j.energy.2025.138633_bib31) 2023; 15
References_xml – volume: 236
  start-page: 890
  year: 2019
  ident: 10.1016/j.energy.2025.138633_bib8
  article-title: An overview on the light alcohol fuels in diesel engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.138
– volume: vol. 1
  start-page: 300
  year: 2009
  ident: 10.1016/j.energy.2025.138633_bib61
– volume: 36
  start-page: 153
  year: 2011
  ident: 10.1016/j.energy.2025.138633_bib60
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
– volume: 37
  issue: 6
  year: 2025
  ident: 10.1016/j.energy.2025.138633_bib4
  article-title: Threshold sensitivity study on spray-spray impingement under flexible injection strategy for fuel/air mixture evaluation
  publication-title: Phys Fluids
  doi: 10.1063/5.0268946
– volume: 54
  start-page: 251
  year: 2009
  ident: 10.1016/j.energy.2025.138633_bib15
  article-title: Heavy oil metering applications
  publication-title: Dev Petr Sci
– volume: 10
  start-page: 885
  issue: 4
  year: 1989
  ident: 10.1016/j.energy.2025.138633_bib65
  article-title: Volumetric properties of 1-alkanols at temperatures in the range 298–348 K and pressures up to 40 MPa
  publication-title: Int J Thermophys
  doi: 10.1007/BF00514483
– volume: 1
  start-page: 703
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2025.138633_bib12
  article-title: Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels
  publication-title: SAE International Journal of Fuels and Lubricants
  doi: 10.4271/2008-01-1379
– volume: 206
  start-page: 701
  year: 2017
  ident: 10.1016/j.energy.2025.138633_bib16
  article-title: Development of fuel metering techniques for spark ignition engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.06.043
– volume: 152
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib66
  article-title: Measurements of density and viscosity of 1-hexadecanol in the temperature range from (328.15 to 623.15) K at pressures up to 10 MPa
  publication-title: J Chem Therm
  doi: 10.1016/j.jct.2020.106263
– volume: 551
  start-page: 124
  year: 2013
  ident: 10.1016/j.energy.2025.138633_bib22
  article-title: Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, high-temperature conditions
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2012.10.022
– volume: 157
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib46
  article-title: Densities and viscosities for binary mixtures of dimethyl carbonate with 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol
  publication-title: J Chem Therm
  doi: 10.1016/j.jct.2021.106404
– volume: 13176
  start-page: 95
  year: 2024
  ident: 10.1016/j.energy.2025.138633_bib28
  article-title: SF6 gas concentration prediction model based on PSO-BP and PSO-RBF algorithms
– volume: 62
  start-page: 780
  year: 2017
  ident: 10.1016/j.energy.2025.138633_bib47
  article-title: Densities and viscosities for binary liquid mixtures of n-undecane+1-heptanol, 1-octanol, 1-nonanol, and 1-decanol from 283.15 to 363.15 K at 0.1 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.6b00834
– start-page: 336
  year: 2007
  ident: 10.1016/j.energy.2025.138633_bib63
  article-title: Particle swarm optimization of neural network architectures andweights
– volume: 1
  start-page: 203
  year: 2022
  ident: 10.1016/j.energy.2025.138633_bib19
  article-title: Recent advances in the prediction of thermophysical properties of nanofluids using artificial intelligence
  publication-title: Hybrid Nanofluids
  doi: 10.1016/B978-0-323-85836-6.00009-0
– volume: 57
  start-page: 2560
  year: 2012
  ident: 10.1016/j.energy.2025.138633_bib41
  article-title: Densities and viscosities for binary liquid mixtures of ethanol + 1-propanol, 1-butanol, and 1-pentanol from (293.15 to 328.15) K at 0.1 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/je300632p
– volume: 6
  start-page: 439
  year: 1985
  ident: 10.1016/j.energy.2025.138633_bib34
  article-title: Shear viscosity of methanol and methanol + water mixtures under pressure
  publication-title: Int J Thermophys
  doi: 10.1007/BF00508889
– start-page: 165
  year: 2008
  ident: 10.1016/j.energy.2025.138633_bib62
– volume: 18
  start-page: 1355
  issue: 6
  year: 1997
  ident: 10.1016/j.energy.2025.138633_bib43
  article-title: Effect of hydrogen bonding on the viscosity of alcohols at high pressures
  publication-title: Int J Thermophys
  doi: 10.1007/BF02575339
– volume: 25
  start-page: 12607
  issue: 18
  year: 2023
  ident: 10.1016/j.energy.2025.138633_bib11
  article-title: Molecular modelling of the thermophysical properties of fluids: expectations, limitations, gaps and opportunities
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D2CP05423J
– volume: 38
  start-page: 1738
  year: 2011
  ident: 10.1016/j.energy.2025.138633_bib26
  article-title: Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.07.099
– volume: 15
  start-page: 95
  year: 1994
  ident: 10.1016/j.energy.2025.138633_bib32
  article-title: Measurements of the viscosity of alcohols in the temperature range 290-340K at pressures up to 30MPa
  publication-title: Int J Thermophys
  doi: 10.1007/BF01439248
– volume: 344
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib40
  article-title: Viscosities and densities of different alcohols (1-propanol, 2-propanol, 1-pentanol and 2-pentanol) at high pressures
  publication-title: J Mol Liq
– volume: 64
  start-page: 324
  year: 2018
  ident: 10.1016/j.energy.2025.138633_bib42
  article-title: Viscosity and density of n -alcohols at temperatures between (298.15 and 323.15) K and pressures up to 30 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.8b00812
– volume: 16
  start-page: 57
  year: 2005
  ident: 10.1016/j.energy.2025.138633_bib53
  article-title: Sundararajan NA generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/TNN.2004.836241
– volume: 5
  start-page: 467
  year: 2019
  ident: 10.1016/j.energy.2025.138633_bib10
  article-title: An overview of Higher alcohol and biodiesel as alternative fuels in engines
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.04.009
– volume: 404
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.energy.2025.138633_bib6
  article-title: Alcohols as alternative fuels: an overview
  publication-title: Appl Catal Gen
  doi: 10.1016/j.apcata.2011.07.021
– volume: 54
  start-page: 2948
  year: 2009
  ident: 10.1016/j.energy.2025.138633_bib50
  article-title: Densities and kinematic viscosities of ten binary 1Alkanol liquid systems at temperatures of (293.15 and 298.15) K
  publication-title: J Chem Eng Data
  doi: 10.1021/je800497u
– volume: 26
  start-page: 1289
  year: 2005
  ident: 10.1016/j.energy.2025.138633_bib37
  article-title: High-pressure viscosity measurements for the ethanol + toluene binary system
  publication-title: Int J Thermophys
  doi: 10.1007/s10765-005-8089-2
– volume: 233
  start-page: 354
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2025.138633_bib27
  article-title: Using genetic algorithm and particle swarm optimization BP neural network algorithm to improve marine oil spill prediction
  publication-title: Water, Air, Soil Pollut
  doi: 10.1007/s11270-022-05771-x
– volume: 66
  start-page: 712
  year: 2020
  ident: 10.1016/j.energy.2025.138633_bib51
  article-title: Density and viscosity measurements of 1-dodecanol and 1,12-dodecanediol at temperatures of up to 573.15 K and pressures of up to 10 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.0c00845
– volume: 514
  year: 2020
  ident: 10.1016/j.energy.2025.138633_bib67
  article-title: Simultaneous viscosity and density measurements and modeling of 2-alcohols at temperatures between (291 and 353) K and pressures up to 50 MPa
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2020.112559
– volume: 111
  year: 2022
  ident: 10.1016/j.energy.2025.138633_bib2
  article-title: Advanced ignition strategies for gasoline engine clean combustion
– volume: 279
  year: 2020
  ident: 10.1016/j.energy.2025.138633_bib9
  article-title: A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: applications, challenges, and global potential
  publication-title: Fuel
– volume: 148
  start-page: 136
  year: 2015
  ident: 10.1016/j.energy.2025.138633_bib30
  article-title: Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.043
– volume: 17
  start-page: 113
  year: 2004
  ident: 10.1016/j.energy.2025.138633_bib54
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 60
  start-page: 1945
  year: 2015
  ident: 10.1016/j.energy.2025.138633_bib39
  article-title: Density and viscosity of binary liquid mixtures of ethanol+1-hexanol and ethanol+1-heptanol from (293.15 to 328.15) K at 0.1 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/je501133u
– volume: vol. 2
  start-page: 553
  year: 2012
  ident: 10.1016/j.energy.2025.138633_bib57
– volume: 56
  start-page: 39
  year: 2013
  ident: 10.1016/j.energy.2025.138633_bib1
  article-title: An overview of biofuel as a renewable energy source: development and challenges
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.03.087
– volume: 549
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib21
  article-title: Perspective: machine learning of thermophysical properties
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2021.113206
– volume: 44
  start-page: 8736
  issue: 4
  year: 2022
  ident: 10.1016/j.energy.2025.138633_bib7
  article-title: Alcohols as alternative fuels in compression ignition engines for sustainable transportation: a review
  publication-title: Energy Sources, Part A Recovery, Util Environ Eff
– volume: 14
  start-page: 79
  year: 2003
  ident: 10.1016/j.energy.2025.138633_bib64
  article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm
  publication-title: IEEE Trans Neural Network
  doi: 10.1109/TNN.2002.804317
– volume: 40
  start-page: 202
  year: 1995
  ident: 10.1016/j.energy.2025.138633_bib36
  article-title: Viscosity of binary mixtures of propylamine with alkanols at moderately high pressures
  publication-title: J Chem Eng Data
  doi: 10.1021/je00017a042
– volume: 23
  start-page: 1537
  year: 2002
  ident: 10.1016/j.energy.2025.138633_bib45
  article-title: Density and viscosity of mixtures of n-Hexane and 1-hexanol from 303 to 423 K up to 50 MPa
  publication-title: Int J Thermophys
  doi: 10.1023/A:1020785816403
– start-page: 195
  year: 1995
  ident: 10.1016/j.energy.2025.138633_bib58
– volume: 42
  start-page: 615
  year: 2004
  ident: 10.1016/j.energy.2025.138633_bib48
  article-title: Density and viscosity of 1-alkanols
  publication-title: Phys Chem Liq
  doi: 10.1080/00319100412331284422
– volume: 25
  start-page: 549
  year: 2014
  ident: 10.1016/j.energy.2025.138633_bib55
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1522-8
– volume: 163
  year: 2025
  ident: 10.1016/j.energy.2025.138633_bib5
  article-title: Experimental investigation of fuel adhesion from wall-impinging spray with various injection mass ratios
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2024.111403
– volume: 8
  start-page: 147
  year: 1987
  ident: 10.1016/j.energy.2025.138633_bib33
  article-title: Viscosity of (water+alcohol) mixtures under high pressure
  publication-title: Int J Thermophys
  doi: 10.1007/BF00515199
– volume: 38
  start-page: 370
  year: 1993
  ident: 10.1016/j.energy.2025.138633_bib35
  article-title: Excess dynamic viscosity and excess volume of N-butylamine + 1-alkanol mixtures at moderately high pressures
  publication-title: J Chem Eng Data
  doi: 10.1021/je00011a010
– volume: 397
  year: 2024
  ident: 10.1016/j.energy.2025.138633_bib23
  article-title: Density and viscosity modeling of liquid adipates using neural network approaches
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2024.124134
– volume: 35
  start-page: 4661
  issue: 9
  year: 2007
  ident: 10.1016/j.energy.2025.138633_bib14
  article-title: Importance of biodiesel as transportation fuel
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.04.003
– volume: 120
  start-page: 547
  year: 2013
  ident: 10.1016/j.energy.2025.138633_bib29
  article-title: A hybrid optimization-based recurrent neural network for real-time data prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.016
– volume: 3
  issue: 1
  year: 2025
  ident: 10.1016/j.energy.2025.138633_bib3
  article-title: Comparative analysis and normalization of single-hole vs. multi-hole spray characteristics: 1st report on spray characteristic comparison
  publication-title: Green Energy and Resources
  doi: 10.1016/j.gerr.2025.100120
– start-page: 617
  year: 2006
  ident: 10.1016/j.energy.2025.138633_bib59
  article-title: BP neural network optimized with PSO algorithm and its application in forecasting
– volume: 134
  start-page: 71
  year: 2007
  ident: 10.1016/j.energy.2025.138633_bib17
  article-title: Molecular simulation of the thermophysical properties of fluids: from understanding toward quantitative predictions
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2006.12.019
– volume: 565
  year: 2023
  ident: 10.1016/j.energy.2025.138633_bib20
  article-title: Group-contribution SAFT equations of state: a review
  publication-title: Fluid Phase Equilib
  doi: 10.1016/j.fluid.2022.113674
– volume: 556
  start-page: 89
  year: 2013
  ident: 10.1016/j.energy.2025.138633_bib24
  article-title: Prediction of hydrocarbon densities using an artificial neural network-group contribution method up to high temperatures and pressures
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2013.01.038
– volume: 64
  start-page: 1937
  year: 2019
  ident: 10.1016/j.energy.2025.138633_bib49
  article-title: Viscosities and densities of fatty alcohol mixtures from 298.15 to 338.15 K: estimation by Kay's rule and prediction by the UNIFAC-VISCO and GC-UNIMOD group contribution methods
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.8b00992
– volume: 33
  start-page: 233
  year: 1998
  ident: 10.1016/j.energy.2025.138633_bib56
  article-title: Back propagation neural networks
  publication-title: Subst Use Misuse
  doi: 10.3109/10826089809115863
– volume: 302
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib18
  article-title: A comprehensive review of biodiesel property prediction models for combustion modeling studies
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121085
– volume: 64
  start-page: 1922
  year: 2019
  ident: 10.1016/j.energy.2025.138633_bib44
  article-title: Densities and viscosities for binary liquid mixtures of pentanol Isomers from (288.15 to 328.15) K at 0.1 MPa
  publication-title: J Chem Eng Data
  doi: 10.1021/acs.jced.8b00979
– volume: 12
  start-page: 459
  issue: 3
  year: 1991
  ident: 10.1016/j.energy.2025.138633_bib38
  article-title: Viscosity of methanol and 2-methyl-2-propanol mixtures under high pressures
  publication-title: Int J Thermophys
  doi: 10.1007/BF00502362
– volume: 15
  start-page: 4117
  issue: 23
  year: 2023
  ident: 10.1016/j.energy.2025.138633_bib31
  article-title: A prediction model of coal seam roof water abundance based on PSO-GA-BP neural network
  publication-title: Water
  doi: 10.3390/w15234117
– volume: 5
  start-page: 319
  year: 2017
  ident: 10.1016/j.energy.2025.138633_bib52
  article-title: A normalization method for backpropagation: a comparative study
  publication-title: Sci J Univ Zakho
  doi: 10.25271/2017.5.4.381
– volume: 171
  start-page: 1787
  year: 2018
  ident: 10.1016/j.energy.2025.138633_bib13
  article-title: Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.06.089
– volume: 12
  start-page: 5625
  year: 2021
  ident: 10.1016/j.energy.2025.138633_bib25
  article-title: Liquid density prediction of ethanol/water, using artificial neural network
  publication-title: Biointerface Res Appl Chem
  doi: 10.33263/BRIAC124.56255637
SSID ssj0005899
Score 4.9617605
SourceID crossref
SourceType Index Database
StartPage 138633
Title The BP model based on PSO-GA hybrid algorithm optimization for the calculation of n-alcohol densities
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF20HvQiWhW_2YO3kNAmu209tvULQS2o2FtIshubahOxKVgP_nZnd5NNtCLWSyjLMkk6j5nN8N4MQkfM5rzp2Mysh9Q3SUhapm_XQhOSs8dqnNeDhhAnX103Lu7JZZ_2C0qQVJekvhW8_6gr-Y9XYQ38KlSyc3hWG4UF-A3-hSt4GK5_9nGnp6bZGCIfMVH7793emOdtYzAVYizDe35MXqN0MDISiA6jTHap2YXgoiCb4CU5HaanZuYaTDDb05ximNfulVJQtCh9U6x4XUd4yArP_chLhpGGy4kad90d8PjJi4pArDaL5cfppMQLiiYSVxFLspSaVSRsWmJ35EqsmkkJ-RJlHdWzKIuTdafVUA0wZkK4qiYMLS7fyBI3sIrtXztmf8tkml-YU9eGrrLiCiuusrKIlmzIAGLMh_VRogO15KxR_ey5zFJyAWefpXSMKZ1H7tbQavYhgdsKFetogcdVtJzrzMdVtHVaaBhhYxbExxuIA2xwp4clbLCEDU5irGCDFWywhg0uwwaD0zHABpdgg5MQa9hgDZtNRM5O77oXZv4C7otqbOL-9rc5W6gSJzHfRpgwnzqM-U3foSQg1DvmnMLJkIU0OG559g6az_TunPv30EoBu31USV8n_ACOhql_KH36CXlSabE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+BP+model+based+on+PSO-GA+hybrid+algorithm+optimization+for+the+calculation+of+n-alcohol+densities&rft.jtitle=Energy+%28Oxford%29&rft.au=Wang%2C+Xiaojie&rft.au=Dai%2C+Chenkai&rft.au=Peng%2C+Chengyuan&rft.au=Liu%2C+Jidong&rft.date=2025-12-01&rft.issn=0360-5442&rft.volume=339&rft.spage=138633&rft_id=info:doi/10.1016%2Fj.energy.2025.138633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2025_138633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon