Search algorithm on strongly regular graphs based on scattering quantum walks
Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the sea...
Saved in:
| Published in | 中国物理B:英文版 no. 1; pp. 112 - 118 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
2017
|
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 |
Cover
| Summary: | Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm’s performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally. |
|---|---|
| Bibliography: | Xi-Ling Xue;Zhi-Hao Liu;Han-Wu Chen;School of Computer Science and Engineering,Southeast University 11-5639/O4 |
| ISSN: | 1674-1056 2058-3834 |