Bias in Generative AI Systems: A 3-Layer Response and Liability Determination
The risk of bias is widely noticed in the entire process of generative artificial intelligence (generative AI) systems.To protect the rights of the public and improve the effectiveness of AI regulations, feasible measures to address the bias problem in the context of large data should be proposed as...
Saved in:
| Published in | 当代社会科学(英文) no. 2; pp. 121 - 138 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Chinese |
| Published |
四川省社会科学院研究生学院
30.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2096-0212 |
Cover
| Abstract | The risk of bias is widely noticed in the entire process of generative artificial intelligence (generative AI) systems.To protect the rights of the public and improve the effectiveness of AI regulations, feasible measures to address the bias problem in the context of large data should be proposed as soon as possible.Since bias originates in every part and various aspects of AI product lifecycles, laws and technical measures should consider each of these layers and take different causes of bias into account, from data training, modeling, and application design.The Interim Measures for the Administration of Generative AI Service (the Interim Measures), formulated by the Office of the Central Cyberspace Affairs Commission (CAC) and other departments have taken the initiatives to govern AI.However, it lacks specific details on issues such as how to prevent the risk of bias and reduce the effect of bias in decision-making.The Interim Measures also fail to take causes of bias into account, and several principles mu |
|---|---|
| AbstractList | The risk of bias is widely noticed in the entire process of generative artificial intelligence (generative AI) systems.To protect the rights of the public and improve the effectiveness of AI regulations, feasible measures to address the bias problem in the context of large data should be proposed as soon as possible.Since bias originates in every part and various aspects of AI product lifecycles, laws and technical measures should consider each of these layers and take different causes of bias into account, from data training, modeling, and application design.The Interim Measures for the Administration of Generative AI Service (the Interim Measures), formulated by the Office of the Central Cyberspace Affairs Commission (CAC) and other departments have taken the initiatives to govern AI.However, it lacks specific details on issues such as how to prevent the risk of bias and reduce the effect of bias in decision-making.The Interim Measures also fail to take causes of bias into account, and several principles mu |
| Author | Jiang Huiwen Tang Shuchen |
| Author_xml | – sequence: 1 fullname: Tang Shuchen organization: Tsinghua University – sequence: 2 fullname: Jiang Huiwen organization: Tsinghua University |
| BookMark | eNqNjsEKgkAUAPdgkJX_8KCzsK5S2s2yMrJLBtVJtnzBhj7DJ4F_X4c-oNNcZmBGwqKG0BK2ktHMlcpTQ-EwP6WUah6qIAptcVgazWAItkjY6s68EeId5D13WPMCYvDdTPfYwhH51RAjaCohM_pmKtP1kGCHbW3omzY0EYOHrhidH8diulmfVql718wFMZdFkuTp_nI9K6mC74f0PP8_6wPcjzvx |
| ContentType | Journal Article |
| DBID | NSCOK |
| DatabaseName | 国家哲学社会科学文献中心 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EndPage | 138 |
| ExternalDocumentID | DDSHKXYW2024002011 |
| GroupedDBID | -08 -0H -SH -S~ 5VR 92M 9D9 9DH AAXDM ABUWG ADZJE AFKRA AFUIB ALMA_UNASSIGNED_HOLDINGS ALSLI AZQEC BENPR CAJEH CCPQU DWQXO GNUQQ GROUPED_DOAJ M2R NSCOK RT8 T8X TCJ TGC U1F U1G U5H U5R |
| ID | FETCH-cass_nssd_DDSHKXYW20240020113 |
| ISSN | 2096-0212 |
| IngestDate | Tue Jan 21 20:53:22 EST 2025 |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | generative AI bias AI governance |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-cass_nssd_DDSHKXYW20240020113 |
| OpenAccessLink | https://www.ncpssd.cn/Literature/articleinfo?id=DDSHKXYW2024002011&type=journalArticle |
| ParticipantIDs | cass_nssd_DDSHKXYW2024002011 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-30 |
| PublicationDateYYYYMMDD | 2024-03-30 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | 当代社会科学(英文) |
| PublicationYear | 2024 |
| Publisher | 四川省社会科学院研究生学院 |
| Publisher_xml | – name: 四川省社会科学院研究生学院 |
| SSID | ssj0002782498 ssib034324814 ssib051367590 |
| Score | 4.757726 |
| Snippet | The risk of bias is widely noticed in the entire process of generative artificial intelligence (generative AI) systems.To protect the rights of the public and... |
| SourceID | cass |
| SourceType | Aggregation Database |
| StartPage | 121 |
| Title | Bias in Generative AI Systems: A 3-Layer Response and Liability Determination |
| URI | https://www.ncpssd.cn/Literature/articleinfo?id=DDSHKXYW2024002011&type=journalArticle |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2096-0212 databaseCode: DOA dateStart: 20210101 customDbUrl: isFulltext: true dateEnd: 20241231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002782498 providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central issn: 2096-0212 databaseCode: BENPR dateStart: 20220101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0002782498 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZn_Yy9sm6dUWwHWwPHrEtK1Lf5Noh_drLMpY9Fdu1qfeQwZIw1j-mf2vvJMVx11HaghHizshn34_TSbo7M_ahETJq4mERnKk6CUQpm0AnivatGionVuMkTrnDJ1_k5Js4nCWzweCyF7W0Wpafq4v_5pU8RKtIQ71Sluw9NNsNigTso36xRQ1jeycdp21hw1ld7WgbBGQO1kXIXc55HBwX6FXTNj3FwrrDguPWVef-i-bGR8N0-vGOKuQJpBnoGHIBaQoGOyMw2M8tZR-0sZQR6JBuNhkYCfmYWEpBrkClkCJLgpagRmtWt_EwLagW-PkKUdMB9LAl4mTV_vE0vx8RCZugN-wQRE_UKV0kJ8qQkTAaxw_vJqcGrcFEljUELWxHQyrtOAL0-ObNG6MZDW1QdRj1sBv1DHTo8rH9XB-6yjL_VNzOsq-To9mP7_R25E5T6vijOIx6C3a0VpSRK9TmDDqh4neJP3P86Y50cW1rf4m4Fgrn_QrXRD0PZvqUPfFLD24cjp6xwcX5c7bt8rO5t_EL_tEXIv_0gp0Qvng75xt8cXPAPb72uOEeXXyNLo7o4h26-DV0vWTvx_l0fxKQbKfzxeLs9OYniF-xrfmvef2a8ZEs40IVdVmUWpRlrdDrLyqZiCZqmqrS22zntpHe3M5-yx5vYLXDtpa_V_U7dPyW5a79_ld8Kz-o |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+in+Generative+AI+Systems%3A+A+3-Layer+Response+and+Liability+Determination&rft.jtitle=%E5%BD%93%E4%BB%A3%E7%A4%BE%E4%BC%9A%E7%A7%91%E5%AD%A6%EF%BC%88%E8%8B%B1%E6%96%87%EF%BC%89&rft.au=Tang+Shuchen&rft.au=Jiang+Huiwen&rft.date=2024-03-30&rft.pub=%E5%9B%9B%E5%B7%9D%E7%9C%81%E7%A4%BE%E4%BC%9A%E7%A7%91%E5%AD%A6%E9%99%A2%E7%A0%94%E7%A9%B6%E7%94%9F%E5%AD%A6%E9%99%A2&rft.issn=2096-0212&rft.issue=2&rft.spage=121&rft.epage=138&rft.externalDocID=DDSHKXYW2024002011 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-0212&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-0212&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-0212&client=summon |