DEVELOPMENT OF STOCHASTICALLY PERTURBED PARAMETERIZATION SCHEME FOR THE SURFACE VARIABLES IN WRF BY OPTIMIZING THE RANDOM FORCING PARAMETERS USING THE MICRO-GENETIC ALGORITHM
The ensemble data assimilation system expresses the model uncertainties by ensemble spread, that is, the standard deviation of ensemble background error covariance. The ensemble spread generally suffers from underestimation problems due to the limited ensemble size, sampling errors, model errors, et...
Saved in:
Published in | 18th Annual Meeting of the Asia Oceania Geosciences Society pp. 10 - 12 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
WORLD SCIENTIFIC
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISBN | 9811260095 9789811260117 9811260109 9789811260100 9789811260094 9811260117 |
DOI | 10.1142/9789811260100_0004 |
Cover
Abstract | The ensemble data assimilation system expresses the model uncertainties by ensemble spread, that is, the standard deviation of ensemble background error covariance. The ensemble spread generally suffers from underestimation problems due to the limited ensemble size, sampling errors, model errors, etc. To solve this problem in terms of model errors, recent studies proposed stochastic perturbation schemes to increase the ensemble spreads by adding random forcing to model tendencies or variables. In this study, we focus on the near-surface uncertainties which are affected by interactions between the land surface (LS) and atmospheric processes. Although the LS variables are crucial to provide various fluxes as the lower boundary condition to the atmosphere, their uncertainties were not much addressed yet. We employed the stochastically perturbed parameterization (SPP) scheme for the LS variables within the Weather Research and Forecasting (WRF) ensemble system. As a testbed experiment with the newly developed WRF ensemble-SPP system, we perturbed soil temperature and moisture in the Noah Land Surface Model to improve the performance of low-level atmospheric variables. To determine the optimal random forcing parameters used in perturbation, we employed a global optimization algorithm - the micro-genetic algorithm. Our results depicted positive impacts on the ensemble spread. |
---|---|
AbstractList | The ensemble data assimilation system expresses the model uncertainties by ensemble spread, that is, the standard deviation of ensemble background error covariance. The ensemble spread generally suffers from underestimation problems due to the limited ensemble size, sampling errors, model errors, etc. To solve this problem in terms of model errors, recent studies proposed stochastic perturbation schemes to increase the ensemble spreads by adding random forcing to model tendencies or variables. In this study, we focus on the near-surface uncertainties which are affected by interactions between the land surface (LS) and atmospheric processes. Although the LS variables are crucial to provide various fluxes as the lower boundary condition to the atmosphere, their uncertainties were not much addressed yet. We employed the stochastically perturbed parameterization (SPP) scheme for the LS variables within the Weather Research and Forecasting (WRF) ensemble system. As a testbed experiment with the newly developed WRF ensemble-SPP system, we perturbed soil temperature and moisture in the Noah Land Surface Model to improve the performance of low-level atmospheric variables. To determine the optimal random forcing parameters used in perturbation, we employed a global optimization algorithm - the micro-genetic algorithm. Our results depicted positive impacts on the ensemble spread. |
Author | Lim, S. Park, S. K. Cassardo, C. |
Author_xml | – sequence: 1 givenname: S. surname: Lim fullname: Lim, S. – sequence: 2 givenname: S. K. surname: Park fullname: Park, S. K. – sequence: 3 givenname: C. surname: Cassardo fullname: Cassardo, C. |
BookMark | eNqdkN9OwjAUxmvUREFewKu-ANp27N-FF2V0rMm2kq5g8GZZy5ZMEQiTEF7KZxQEjYmJF16dnJPv9-U7XwtcLJaLEoBbjO4w7pF73_V8D2PiIIxQjhDqnYHOjyN2z0HrtCDfvgKdpnney4jvOD0bX4P3AZuwWIwSliooQpgpEUQ0UzygcTyFIybVWPbZAI6opAlTTPInqrhIYRZELGEwFBKqiMFsLEMaMDihktN-zDLIU_goQ9ifQjFSPOFPPB1-SiVNByI5kMHh9O2cwXH2pUl4IEV3yFK2jwJpPBSSqyi5AZdVMW_Kzmm2wThkKoi6sRgeInc3xMJVt6f1zPasojSu2b9KNKpmSNvG9gtNLBtp15SmQqXlaowcr5w5BnvGrgghliEVsdrAOvpuFqtity3m83y1rl-L9S7HKD9Un_-ufk-5R2q7XM9njanLxVtd1SbXy-VL8zf58D8y1-u6rKwPwUyPjw |
ContentType | Book Chapter Conference Proceeding |
Copyright | The Authors |
Copyright_xml | – notice: The Authors |
DBID | ADTOC UNPAY |
DOI | 10.1142/9789811260100_0004 |
DatabaseName | Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 9789811260117 9811260109 9789811260100 9811260117 |
Editor | Nguyen, Van-Thanh-Van Liong, Shie-Yui Satoh, Masaki |
Editor_xml | – sequence: 1 givenname: Van-Thanh-Van surname: Nguyen fullname: Nguyen, Van-Thanh-Van organization: McGill University – sequence: 2 givenname: Shie-Yui surname: Liong fullname: Liong, Shie-Yui organization: National University of Singapore – sequence: 3 givenname: Masaki surname: Satoh fullname: Satoh, Masaki organization: The University of Tokyo |
EndPage | 12 |
ExternalDocumentID | 10.1142/9789811260100_0004 |
GroupedDBID | 9WS AABBV AATMT ADCHV AIQUZ ALMA_UNASSIGNED_HOLDINGS BBABE CZZ ADTOC UNPAY |
ID | FETCH-LOGICAL-u231f-4bbd583aec7c2962b0fd0b5c59ab2350b7cecf0e37b1068ed6c18c5f2223c2f23 |
IEDL.DBID | UNPAY |
ISBN | 9811260095 9789811260117 9811260109 9789811260100 9789811260094 9811260117 |
IngestDate | Thu Aug 28 11:12:27 EDT 2025 Sat Mar 15 06:31:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | stochastic perturbation model error land surface model optimization Ensemble data assimilation |
Language | English |
License | cc-by-nc-nd |
LinkModel | DirectLink |
MeetingName | 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) |
MergedId | FETCHMERGED-LOGICAL-u231f-4bbd583aec7c2962b0fd0b5c59ab2350b7cecf0e37b1068ed6c18c5f2223c2f23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1142/9789811260100_0004 |
PageCount | 3 |
ParticipantIDs | worldscientific_books_10_1142_9789811260100_0004 unpaywall_primary_10_1142_9789811260100_0004 worldscientific_books_10_1142_9789811260100_0004_brief |
PublicationCentury | 2000 |
PublicationDate | 20220400 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220400 |
PublicationDecade | 2020 |
PublicationSubtitle | Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) |
PublicationTitle | 18th Annual Meeting of the Asia Oceania Geosciences Society |
PublicationYear | 2022 |
Publisher | WORLD SCIENTIFIC |
Publisher_xml | – name: WORLD SCIENTIFIC |
SSID | ssj0002966451 ssib050769952 |
Score | 1.7945961 |
Snippet | The ensemble data assimilation system expresses the model uncertainties by ensemble spread, that is, the standard deviation of ensemble background error... |
SourceID | unpaywall worldscientific |
SourceType | Open Access Repository Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | AS - Atmospheric Sciences |
Title | DEVELOPMENT OF STOCHASTICALLY PERTURBED PARAMETERIZATION SCHEME FOR THE SURFACE VARIABLES IN WRF BY OPTIMIZING THE RANDOM FORCING PARAMETERS USING THE MICRO-GENETIC ALGORITHM |
URI | https://www.worldscientific.com/doi/10.1142/9789811260100_0004 https://doi.org/10.1142/9789811260100_0004 |
UnpaywallVersion | publishedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hcEAc-hBUpWrRHDjWyFk_c9wEG7tKbGttU8LF2l3vSqgoRZAI0R_V39hdO6QRrapytWaskWe0M-Od7xuETjwsdG8ycq3QlcJyVaAspjOhJd2gdZgMfN6RPc8yP6ndL5fe5Zomx2Bhtu_vhy42BLCj0MBcdN9giCwN9eeuby6TBmi3zgoyf0LC_FV4H-2tFrfs8YHd3OyjVx0LaY80NIM4W5kkft2vJLrvCAjNAMm309WSn4ofz-gZ_8_IN-jwN2IPik0ueot25OIA_dzasAl5DGWVTxJSVoYCYTqHIqJVTcfRGRSEklmkC9v0qvtlBaVhSohAd4hQJRGUNY3JJIILQlMynkYlpBl8pTGM55AXlT7_rtLsvBOlJDvLZ0ZzYh5t3lyCWfDRy2jP09wyQ3PaFCDT85ymVTI7RHUcVZPEWu9nsFa6KlSWy3nrhdqjIhB45GNuq9bmnvBGjGPHs3kgpFC2dAKuG89Qtr4YhsJTpiQRWGHnHRosvi_kewStCrEY4paF2NEBw3jIAt_DzHZ05PiuOEKfN35sbnsejqbHVOPmz89_hOxnrm5Mz3L_TxX_pSoNv7uW6sPLTPuIBsu7lfykS5klP9alfJAeryP5F2CV4GA |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBYjfRh9aDfW0o523MMe5-LIP_OopHbtkdhGttemL0aSJRgrWWkTSvtH7W-cZGdZ6MZYX82dOXyH7s667zuEPnpY6N5k5FqhK4XlqkBZTGdCS7pB6zAZ-Lwje55lflK7n6-8qzVNjsHCbN_fD11sCGBHoYG56L7BEFka6s8d31wmDdBOnRVk_gsJ81fhXfR6tbhljw_s5mYX7XUspD3S0AzibGWSeL9fSXTfERCaAZJvZ6slPxNPz-gZ_8_IN-jgN2IPik0ueoteycU79GNrwybkMZRVPklIWRkKhOkciohWNR1H51AQSmaRLmzT6-6XFZSGKSEC3SFClURQ1jQmkwi-EJqS8TQqIc3gksYwnkNeVPr8u06zi06Ukuw8nxnNiXm0eXMJZsFHL6M9T3PLDM1pU4BML3KaVsnsANVxVE0Sa72fwVrpqlBZLuetF2qPikDgkY-5rVqbe8IbMY4dz-aBkELZ0gm4bjxD2fpiGApPmZJEYIWdQzRYfF_IIwStCrEY4paF2NEBw3jIAt_DzHZ05PiuOEafNn5sbnsejqbHVOPmz89_jOxnrm5Mz3L_TxX_pSoNv_sq1fuXmXaCBsu7lTzVpcySf1jH8E8kLN9- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=18th+Annual+Meeting+of+the+Asia+Oceania+Geosciences+Society&rft.au=Lim%2C+S.&rft.au=Park%2C+S.+K.&rft.au=Cassardo%2C+C.&rft.atitle=DEVELOPMENT+OF+STOCHASTICALLY+PERTURBED+PARAMETERIZATION+SCHEME+FOR+THE+SURFACE+VARIABLES+IN+WRF+BY+OPTIMIZING+THE+RANDOM+FORCING+PARAMETERS+USING+THE+MICRO-GENETIC+ALGORITHM&rft.date=2022-04-01&rft.pub=WORLD+SCIENTIFIC&rft.isbn=9789811260094&rft.spage=10&rft.epage=12&rft_id=info:doi/10.1142%2F9789811260100_0004&rft.externalDBID=n%2Fa&rft.externalDocID=10.1142%2F9789811260100_0004 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F9789811260100_0004 |