基于多模型融合集成学习的智能变电站二次设备状态评估
为准确评估智能变电站二次设备运行状态,建立了二次设备状态评估指标体系,并结合多种机器学习算法的差异性,提出了基于多模型融合集成学习的二次设备状态评估法.该方法采用双层结构,上层中利用划分好的数据对数个基学习器进行k折验证,下层中利用全连接级联神经网络融合多个基学习器,并采用改进的列文伯格-马夸尔特算法训练该神经网络加速模型收敛.实例分析表明,所提出的方法可以准确地评估二次设备的运行状态,并为智能变电站系统和二次设备的检修工作提供指导意见....
Saved in:
Published in | 电力系统保护与控制 Vol. 49; no. 12; pp. 148 - 157 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
国网安徽省电力有限公司, 安徽 合肥 230022%长园深瑞继保自动化有限公司,广东 深圳 518057
16.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.19783/j.cnki.pspc.200989 |
Cover
Abstract | 为准确评估智能变电站二次设备运行状态,建立了二次设备状态评估指标体系,并结合多种机器学习算法的差异性,提出了基于多模型融合集成学习的二次设备状态评估法.该方法采用双层结构,上层中利用划分好的数据对数个基学习器进行k折验证,下层中利用全连接级联神经网络融合多个基学习器,并采用改进的列文伯格-马夸尔特算法训练该神经网络加速模型收敛.实例分析表明,所提出的方法可以准确地评估二次设备的运行状态,并为智能变电站系统和二次设备的检修工作提供指导意见. |
---|---|
AbstractList | 为准确评估智能变电站二次设备运行状态,建立了二次设备状态评估指标体系,并结合多种机器学习算法的差异性,提出了基于多模型融合集成学习的二次设备状态评估法.该方法采用双层结构,上层中利用划分好的数据对数个基学习器进行k折验证,下层中利用全连接级联神经网络融合多个基学习器,并采用改进的列文伯格-马夸尔特算法训练该神经网络加速模型收敛.实例分析表明,所提出的方法可以准确地评估二次设备的运行状态,并为智能变电站系统和二次设备的检修工作提供指导意见. |
Author | 黄太贵 赵子根 叶远波 刘宏君 谢民 |
AuthorAffiliation | 国网安徽省电力有限公司, 安徽 合肥 230022%长园深瑞继保自动化有限公司,广东 深圳 518057 |
AuthorAffiliation_xml | – name: 国网安徽省电力有限公司, 安徽 合肥 230022%长园深瑞继保自动化有限公司,广东 深圳 518057 |
Author_FL | YE Yuanbo XIE Min HUANG Taigui LIU Hongjun ZHAO Zigen |
Author_FL_xml | – sequence: 1 fullname: YE Yuanbo – sequence: 2 fullname: HUANG Taigui – sequence: 3 fullname: XIE Min – sequence: 4 fullname: ZHAO Zigen – sequence: 5 fullname: LIU Hongjun |
Author_xml | – sequence: 1 fullname: 叶远波 – sequence: 2 fullname: 黄太贵 – sequence: 3 fullname: 谢民 – sequence: 4 fullname: 赵子根 – sequence: 5 fullname: 刘宏君 |
BookMark | eNotzT1Lw0AAgOEbKlhrf4Gra-JdLpfLjVL8woJL93J3yUmjpNUgropFi_Wjg4OtUC0UEfxcFAzqr8kl8V8o6PRuzzsFCmEz9AGYQdBEjLp4LjBluNEwW1FLmhaEzGUFUEQOtQ1sIzIJylHUEBBiRIjjsiJY1ddxEp_p8SC9G-lhNx-e6l7n--ow7fT0423yfpMN2mk_zg8-9flldvGa3feT-CR9GOVPX3p8lB2_pXv7-XM7-XiZBhOKb0Z--b8lUFtcqFWWjera0kplvmpEjDHDEbbreEoSKIgSjo2YEjbzKMYSc4qpkj7hPuYQUc58xIUlLWpTVzEhOWECl8DsH7vLQ8XD9XrQ3NkOf4f1wNuyoIWQBRHDPxBjbH0 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19783/j.cnki.pspc.200989 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | A state assessment method for intelligent substation secondary equipment based on multi-model ensemble learning |
EndPage | 157 |
ExternalDocumentID | jdq202112019 |
GrantInformation_xml | – fundername: 国家电网公司科技项目 funderid: (521200190081) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s999-6b486dfc50b5fb6419fb49d733c3a737fce5ae3a017a9e1ab2c27478f9bca59b3 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 集成学习 状态评估 二次设备 多模型融合 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s999-6b486dfc50b5fb6419fb49d733c3a737fce5ae3a017a9e1ab2c27478f9bca59b3 |
PageCount | 10 |
ParticipantIDs | wanfang_journals_jdq202112019 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-16 |
PublicationDateYYYYMMDD | 2021-06-16 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitle_FL | Power System Protection and Control |
PublicationYear | 2021 |
Publisher | 国网安徽省电力有限公司, 安徽 合肥 230022%长园深瑞继保自动化有限公司,广东 深圳 518057 |
Publisher_xml | – name: 国网安徽省电力有限公司, 安徽 合肥 230022%长园深瑞继保自动化有限公司,广东 深圳 518057 |
SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
Score | 2.4812772 |
Snippet | ... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 148 |
Title | 基于多模型融合集成学习的智能变电站二次设备状态评估 |
URI | https://d.wanfangdata.com.cn/periodical/jdq202112019 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9RQFA61btyIouKr0oV3VaZOkntv7lkm0wxFwVWF7kqSmfiCsdq66UIUixafXbiwFaqFIoLPjYKD-mvm5b_wnJN0JnYEq5vLzcm553w5X3IfIffEsk5jt4urY22XtIlkSXoKnzlHOyUc-r1IOTJKsw9kz-vpC_LsrJodGb1V3F2yGE8mS3_cV_I_rKIMeaVdsv_AbN8oCrCO_GKJDGO5K45FqARUReCLUFJpQpL4UgBKtPCN8G3WCYUJRGi4MsWSsjBGhCAgEEaTMh6ikJpPCV-zQRA-SjyyZiTpALAvI4wrArZjqgIM66C-ooofkFqOp8IwKgwDwYQi2EZoPFI2vggy74gn06myL2xeEUG5OHUueFHUEJGjJEAkWSWgUFBDhDTFNn1yRBLDkdFU-h43N-h3-17Lr4OAGG7NqNGw7wxUgBwQMkbvcxQCQjNQQUEZ23DjsgD7tzMqB47RpTBrCm0AxXcuDn8blm0J5aeEeQo40B6VwFxiEA1QBUOZnUK8FLvh6Gg-BUwz5OwaRXzkV2zoARs2OlG4QzB0jvDVBK4hcR4mHMXWFMUpg-dzrANEmGGw6SbL-KBY9_kwRDnFjeHhrUmVigC9S5yMDtgvMwqEvO9YkYnAnVC2KWepyPORVnuyhFMoVRyKs-y1212OUxhY7Swfaz5HszNLQ8M_vcfk8T9pXL08Ob8wz0lKIftJ1Y686ldq14laG2fAsMfa62CPVXwlk09faWN4YfyjfH39Y1waaQ2D5byLs_vi3yWU7XpS5V8p0MzQAUqoSF9V968-T4RGwM8Mw-adhI00alwsTHpnDlj789XquJ91PQetkaVLh6xz7ZfNVvNJe2u982azvfGwt_G4vbry88W9zspq-_3r1tdX3fXlzlqzd_d7--nz7rPP3bdrreajzrvN3ocf7a373QdfOrfv9D4ut759OmzNVMOZynQp_ydLaYHylehYGl1LE1WOVRpraUMaS6h5rpu4ked6aVJXUd2NcJyPoG5HsZPQay-TQpxECmL3iDXauNaoH7XGpU5lXdeVTsCVqYxjAC-RNV2TNaAEF8essfza5_Iud2GuyNnxv5w_Ye0bPLonrdHFGzfrY7iAWIxPMcu_AJNczj4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E6%A8%A1%E5%9E%8B%E8%9E%8D%E5%90%88%E9%9B%86%E6%88%90%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%99%BA%E8%83%BD%E5%8F%98%E7%94%B5%E7%AB%99%E4%BA%8C%E6%AC%A1%E8%AE%BE%E5%A4%87%E7%8A%B6%E6%80%81%E8%AF%84%E4%BC%B0&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%8F%B6%E8%BF%9C%E6%B3%A2&rft.au=%E9%BB%84%E5%A4%AA%E8%B4%B5&rft.au=%E8%B0%A2%E6%B0%91&rft.au=%E8%B5%B5%E5%AD%90%E6%A0%B9&rft.date=2021-06-16&rft.pub=%E5%9B%BD%E7%BD%91%E5%AE%89%E5%BE%BD%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C+%E5%AE%89%E5%BE%BD+%E5%90%88%E8%82%A5+230022%25%E9%95%BF%E5%9B%AD%E6%B7%B1%E7%91%9E%E7%BB%A7%E4%BF%9D%E8%87%AA%E5%8A%A8%E5%8C%96%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E4%B8%9C+%E6%B7%B1%E5%9C%B3+518057&rft.issn=1674-3415&rft.volume=49&rft.issue=12&rft.spage=148&rft.epage=157&rft_id=info:doi/10.19783%2Fj.cnki.pspc.200989&rft.externalDocID=jdq202112019 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |