基于统计特征与概率神经网络的变压器局部放电类型识别
针对变压器局部放电类型识别问题,提出了基于统计特征参数与概率神经网络的局部放电模式分类方法.所提方法首先在局部放电类型三维谱图中构建二维分布图谱,然后在二维分布谱图上提取统计特征参数,接着将统计特征参数以特征向量的形式作为概率神经网络的输入量,最后利用概率神经网络对放电类型进行识别.在试验中,利用电晕放电、沿面放电、气隙放电三种放电类型的数据,将所提分类方法与典型局部放电类型分类方法进行比较.实验结果表明,所提分类方法的识别准确率较高、识别时间开销较少....
Saved in:
| Published in | 电力系统保护与控制 Vol. 46; no. 13; pp. 55 - 60 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
江苏大学电气信息工程学院,江苏镇江,212013
01.07.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-3415 |
| DOI | 10.7667/PSPC170962 |
Cover
| Abstract | 针对变压器局部放电类型识别问题,提出了基于统计特征参数与概率神经网络的局部放电模式分类方法.所提方法首先在局部放电类型三维谱图中构建二维分布图谱,然后在二维分布谱图上提取统计特征参数,接着将统计特征参数以特征向量的形式作为概率神经网络的输入量,最后利用概率神经网络对放电类型进行识别.在试验中,利用电晕放电、沿面放电、气隙放电三种放电类型的数据,将所提分类方法与典型局部放电类型分类方法进行比较.实验结果表明,所提分类方法的识别准确率较高、识别时间开销较少. |
|---|---|
| AbstractList | 针对变压器局部放电类型识别问题,提出了基于统计特征参数与概率神经网络的局部放电模式分类方法.所提方法首先在局部放电类型三维谱图中构建二维分布图谱,然后在二维分布谱图上提取统计特征参数,接着将统计特征参数以特征向量的形式作为概率神经网络的输入量,最后利用概率神经网络对放电类型进行识别.在试验中,利用电晕放电、沿面放电、气隙放电三种放电类型的数据,将所提分类方法与典型局部放电类型分类方法进行比较.实验结果表明,所提分类方法的识别准确率较高、识别时间开销较少. |
| Author | 李加彬 李正明 钱露先 |
| AuthorAffiliation | 江苏大学电气信息工程学院,江苏镇江,212013 |
| AuthorAffiliation_xml | – name: 江苏大学电气信息工程学院,江苏镇江,212013 |
| Author_FL | QIAN Luxian LI Jiabin LI Zhengming |
| Author_FL_xml | – sequence: 1 fullname: LI Zhengming – sequence: 2 fullname: QIAN Luxian – sequence: 3 fullname: LI Jiabin |
| Author_xml | – sequence: 1 fullname: 李正明 – sequence: 2 fullname: 钱露先 – sequence: 3 fullname: 李加彬 |
| BookMark | eNotjU1LAkEYgOdgkJmXfkPXrXlndmd2jrH0RUJC3mXcnYkkVmqJrn3RB8JK4KEilA6FEBQegnLJX-M49i8S6vDw3J5nDuXiRqwQWgC8xBnjy-WdcgAcC0ZyKA-Muw51wZtFxSTZq2FMwfOYL_Joy3QHo0Fqs-7k7cnefJnh6egzHb-c2fTKPnds1rLftzZ7tA8XpnVn0qa575n-yc95b9we2vaH7Wem05y8X5rr13k0o-V-oor_LqDK2mol2HBK2-ubwUrJSYTwnZAwrECC5pxgwakHktIQVAREYnCV5IprEhGqhZYMGNUujnyohXyKUBEtoMW_7LGMtYx3q_XG0WE8HVbr0QHB4APF2Ke_c4xoqQ |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.7667/PSPC170962 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Type recognition of partial discharge in power transformer based on statistical characteristics and PNN |
| EndPage | 60 |
| ExternalDocumentID | jdq201813008 |
| GrantInformation_xml | – fundername: 国家自然科学基金项目资助 funderid: (51477070) |
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
| ID | FETCH-LOGICAL-s998-c260e1a1f772097351a33c1ed12a014ea7e7f2d23f9fa6163f40d81bc71bc9ed3 |
| ISSN | 1674-3415 |
| IngestDate | Thu May 29 04:03:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | 变压器 统计特征参数 类型识别 局部放电 概率神经网络 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s998-c260e1a1f772097351a33c1ed12a014ea7e7f2d23f9fa6163f40d81bc71bc9ed3 |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_jdq201813008 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-01 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 电力系统保护与控制 |
| PublicationTitle_FL | Power System Protection and Control |
| PublicationYear | 2018 |
| Publisher | 江苏大学电气信息工程学院,江苏镇江,212013 |
| Publisher_xml | – name: 江苏大学电气信息工程学院,江苏镇江,212013 |
| SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
| Score | 2.3591802 |
| Snippet | 针对变压器局部放电类型识别问题,提出了基于统计特征参数与概率神经网络的局部放电模式分类方法.所提方法首先在局部放电类型三维谱图中构建二维分布图谱,然后在二维分布谱... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 55 |
| Title | 基于统计特征与概率神经网络的变压器局部放电类型识别 |
| URI | https://d.wanfangdata.com.cn/periodical/jdq201813008 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB_aevEiiopflR7McTTJzGSSY2Z3lqIoBSv0VmbnQ_GwUtteevILPyhsEXpQkRYPSkFQehC0i_1rOp36X_heZnZ2lIIfhw1vk_d-eckj814yScayLnldlVKacTuGJ6Htgg-1wY0ktgL3JjMvozHFA87Xb4jpW-7VOW9ubHzQ2LW0vNS9HK8ceq7kf6wKeWBXPCX7D5atQSEDaLAvpGBhSP_KxiT0iOqQQJPQxVSGJPRJEGBmKIkOiWaYIxUJFDIHIUSOhlkaZkG0IJIbHijykdCAOcSRHUO0iWJD5BYSCupyERAYlDQEiAdGH0W0yQkY7qIIFZGOyRFEuagAigPhGUCGmKGpEcVB5w6RwgACHTRD54YglGqiAoPgGIS61cAAKrWxOuDR7i-NhVT7FXhQL0ka1drD_mgT7ZgcFBqxKKI4qotEiwTcoCDQIShGPU1NJwBcq7mywmS9C7ccCygHuKXFZNnlHipeaor6iEbTgZkiXTYUzSvQpNpIBcZ6aENZWaMSV8YsHMbTYdVBqWeMPyziLQg1aHl6t_JYwndtCEW8pkurVnWroes0HFR5J3IV6pRfcvjdifpC4Gv8mZszLebDDJePQoV6A-fdZAF7DN-FynHrCAeXShvrGVXsh6eqG84DL7ur_8O8Qgg1mgs7EBo3P83gMcd3veoVP4ZVXOFthLgluW5yed0w6ntlpK05fdfLot7tRqA4e9w6Vs3wpnQ5XE9YYyt3TlrX8s2dvZ1-Mdg8-PSuePEt332497W__-FR0X9WvN8oBmvF95fF4G3x5km-9irvr-avt_LtBz8eb-2v7xbrX4rtQb6xevD5af784ylrthPOtqbt6jsm9iIeYI25oCmLWAYTWbwcy2OR48QsTRiPKHPTyE_9jCfcyVQWCZgfZS5NYDYZ-_BTaeKctiZ693rpGWsqdnjMVCQySSNXyG7EIzfKODjqiMZJJs5ak1Xb56vH1OJ801Tn_lB-3jo6GggXrIml-8vpJATdS92Lxrg_AWqsoRc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%BB%9F%E8%AE%A1%E7%89%B9%E5%BE%81%E4%B8%8E%E6%A6%82%E7%8E%87%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%8F%98%E5%8E%8B%E5%99%A8%E5%B1%80%E9%83%A8%E6%94%BE%E7%94%B5%E7%B1%BB%E5%9E%8B%E8%AF%86%E5%88%AB&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%9D%8E%E6%AD%A3%E6%98%8E&rft.au=%E9%92%B1%E9%9C%B2%E5%85%88&rft.au=%E6%9D%8E%E5%8A%A0%E5%BD%AC&rft.date=2018-07-01&rft.pub=%E6%B1%9F%E8%8B%8F%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E9%95%87%E6%B1%9F%2C212013&rft.issn=1674-3415&rft.volume=46&rft.issue=13&rft.spage=55&rft.epage=60&rft_id=info:doi/10.7667%2FPSPC170962&rft.externalDocID=jdq201813008 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |