改进EEMD算法在高压并联电抗器声信号去噪中的应用

高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判.提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensemble empirical mode decomposition,EEMD)高压并联电抗器声信号去噪方法.首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组.其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsic mode function,IMF)的筛选截止条件并进行集合...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 51; no. 24; pp. 164 - 174
Main Authors 王果, 雷武, 闵永智, 万保权, 李宝鹏, 王毅斌
Format Journal Article
LanguageChinese
Published 中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074 16.12.2023
兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.230382

Cover

Abstract 高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判.提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensemble empirical mode decomposition,EEMD)高压并联电抗器声信号去噪方法.首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组.其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsic mode function,IMF)的筛选截止条件并进行集合经验模态分解.然后利用相关系数法提取有效的IMF分量.最后对有效IMF分量叠加重构,得到去噪声信号.模拟实验和实测结果表明,该方法具有较好的去噪效果.通过与传统经验模态分解法(empirical mode decomposition,EMD)、标准EEMD去噪技术的比较,验证了该方法在实际应用过程中的有效性和实用性.
AbstractList 高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判.提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensemble empirical mode decomposition,EEMD)高压并联电抗器声信号去噪方法.首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组.其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsic mode function,IMF)的筛选截止条件并进行集合经验模态分解.然后利用相关系数法提取有效的IMF分量.最后对有效IMF分量叠加重构,得到去噪声信号.模拟实验和实测结果表明,该方法具有较好的去噪效果.通过与传统经验模态分解法(empirical mode decomposition,EMD)、标准EEMD去噪技术的比较,验证了该方法在实际应用过程中的有效性和实用性.
Abstract_FL The acoustic signals generated during the operation of high-voltage shunt reactors are a critical basis for accurately determining the reactor's operational status.However,collecting these acoustic signals on-site can be subject to interference from various external noises.The measuring instruments often fail to effectively pre-process these signals,resulting in an inaccurate assessment of the reactor's operating condition.This paper presents an enhanced ensemble empirical mode decomposition(EEMD)acoustic signal denoising approach for high-voltage shunt reactors,one which relies on multi-sensor data fusion and the selection of a minimum lower frequency limit for termination.Initially,a consistent data fusion algorithm is used to correlate and filter the fault sensors,discarding any invalid sensors and determining the active sensor group.Subsequently,the minimum lower limit frequency for each sensor signal is chosen as the screening termination criterion for the intrinsic mode function(IMF)through spectral analysis,and the EEMD decomposition is conducted.The correlation coefficient method is then employed to extract the effective IMF components.Finally,the extracted IMF components are superimposed and reconstructed to obtain the denoised signal.Experimental and measured signals demonstrate that the method can achieve signal denoising accurately.A comparison with the traditional empirical mode decomposition(EMD)method and the standard EEMD denoising technique verifies the practical application effectiveness and practicability of the proposed algorithm.
Author 万保权
雷武
王毅斌
闵永智
王果
李宝鹏
AuthorAffiliation 中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074;兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
AuthorAffiliation_xml – name: 中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074;兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
Author_FL LEI Wu
WANG Guo
MIN Yongzhi
LI Baopeng
WANG Yibin
WAN Baoquan
Author_FL_xml – sequence: 1
  fullname: WANG Guo
– sequence: 2
  fullname: LEI Wu
– sequence: 3
  fullname: MIN Yongzhi
– sequence: 4
  fullname: WAN Baoquan
– sequence: 5
  fullname: LI Baopeng
– sequence: 6
  fullname: WANG Yibin
Author_xml – sequence: 1
  fullname: 王果
– sequence: 2
  fullname: 雷武
– sequence: 3
  fullname: 闵永智
– sequence: 4
  fullname: 万保权
– sequence: 5
  fullname: 李宝鹏
– sequence: 6
  fullname: 王毅斌
BookMark eNotjj1Lw0Ach2-oYK39BK6uiXf3z11yo8T4AhWX7iWX5KRR0moQZ8FJoS6RWnURl6AogvhSHfplekn9FgZ0-i0Pz_NbQLWkl0QILRFsEmE7sBKbQbLXNftpPzApYHBoDdUJty0DLMLmUTNNuxJjIIxxR9SRW2Tj2eTG87bXyudh8Xqpb_Ofxys9ONfj99lJVmZvxdlQj3J9_zKd3OmLDz341qOH6edTeX2qvyogX0Rzyt9Po-b_NlB73Wu7m0ZrZ2PLXW0ZqRDckEL5NOSWpSiAoxwRVq9AYuAAXDLFha0YsyJGqcNISIigMgplQCLJAsxsaKDlP-2xnyg_2e3EvaPDpAp24vCAYgrUwoTDL3ytZE8
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230382
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Application of an improved EEMD algorithm in high voltage shunt reactor sound signal denoising
EndPage 174
ExternalDocumentID jdq202324016
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s996-b9fa2d644f2338f89d6743b036336b5f697f554e522851d1192bedbc1eb5c0573
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords high-voltage shunt reactor
acoustic signal denoising
集合经验模态分解
频率截止
多传感器融合
frequency cutoff
EEMD
声信号去噪
高压并联电抗器
multi-sensor fusion
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s996-b9fa2d644f2338f89d6743b036336b5f697f554e522851d1192bedbc1eb5c0573
PageCount 11
ParticipantIDs wanfang_journals_jdq202324016
PublicationCentury 2000
PublicationDate 2023-12-16
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2023
Publisher 中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
Publisher_xml – name: 中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
– name: 兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%兰州交通大学自动化与电气工程学院,甘肃 兰州 730070%中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北 武汉 430074
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4741352
Snippet 高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判.提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensemble empirical mode...
SourceID wanfang
SourceType Aggregation Database
StartPage 164
Title 改进EEMD算法在高压并联电抗器声信号去噪中的应用
URI https://d.wanfangdata.com.cn/periodical/jdq202324016
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEJ4gXrwYjRpfGA72iSzuzHT3dB-7h9kQEzxhwo3svHwlKwhcuJl40gQvGES9GC9EozExPtADf4YB_BdW1TS7g5D4uExmq7vqq66a7a7q9MPzruZ4Bl3WzlsQzEct7ud-S4uubEmpShmUsl0UOA85dUNO3uTXZ8TM0DBvrFpaWkzHs-Uj95X8j1eBBn7FXbL_4Nm-UCDAO_gXnuBheP6Vj1kimebMapYoZjtM2ySZmmBJxEzCdITFNmRasEQwHTOjWKKZsUwrpKiEKYsvwG8lilA-igN2FCqQXRmSA-ya2AUzIbNtlnDEMz7J6TAbOYHW7lc2VEcxQ_powxQnLDOAMKoZGjdwBeFapID-tn4BtTsOV0843Qx3KACNlISZWhMwR3_KEbldW8FcYJh4UKIRxpKlQFEjD5REzgjQXoBAZjCUGVSpkaMDSsGzvjJnfyolCHFZSr3Tkz7-hl0EoU8c3XJoiSb7kmJEaTvbmdphmgwdEGzMlHYU3SY5wBjvu0c1ICJERMlkFdMhiAC0Psq4fQ0FflI1KLRYkc4qoE-PisCuCXldxY4C7EFM5gOVJGkSg03H-ramMh_0HuMhxpiN8VFGvAWBj2gOoO7E4LqjCHhjOPTrE-pdZOXXkg4N2jj7SKN21rt3Z3xuYS7D7QlhfSnVb6eh383n0XMQh_rymHc8iCBibkykuKATt3M3Ri08Za__GxIaKfUgCQ8hJm_eCSH8MOLCrS3AeC7QeAwiroXut94dX4aKXzusNu3_65Xd3q1GqDp9yjvpcsxRU3cYp72h5dtnvHhndXNv6yV2ELsf1nY-Patebfx897xaeVJtftl7uLq7-nnn8Vq1vlG9-bi99bp6-rVa-VGtv93-9n73xaPqO1TYOOtNd5LpeLLlblBpLeDmglSX3SCHjKcMwlCVSue45QibHIYyFaXUUQnpRAE5GCReuQ_ZXlrkaeYXqcjwpNRz3nDvfq84740CE88KnkJ6VvAszLpCl343C1SZi3YaiAveiGvzrOsgF2abvrr4h_JL3onBP_KyN7z4YKkYgXB_Mb1C3v0FEce31Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%94%B9%E8%BF%9BEEMD%E7%AE%97%E6%B3%95%E5%9C%A8%E9%AB%98%E5%8E%8B%E5%B9%B6%E8%81%94%E7%94%B5%E6%8A%97%E5%99%A8%E5%A3%B0%E4%BF%A1%E5%8F%B7%E5%8E%BB%E5%99%AA%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E7%8E%8B%E6%9E%9C&rft.au=%E9%9B%B7%E6%AD%A6&rft.au=%E9%97%B5%E6%B0%B8%E6%99%BA&rft.au=%E4%B8%87%E4%BF%9D%E6%9D%83&rft.date=2023-12-16&rft.pub=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E7%94%B5%E7%BD%91%E7%8E%AF%E5%A2%83%E4%BF%9D%E6%8A%A4%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89+430074&rft.issn=1674-3415&rft.volume=51&rft.issue=24&rft.spage=164&rft.epage=174&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230382&rft.externalDocID=jdq202324016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg