基于PSO-ELM的可植入UPQC的"源-网-荷-储"系统最优控制策略

针对传统"源-网-荷-储"(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案.该方案通过基于粒子群优化(particle swarm optimization,PSO)的极限学习机(extreme learning machine,ELM)方法实现.在多目标优化运行方案中:第一个优化目标为最大化光伏阵列发电量;第二、三个优化目标分别为最小化负荷电压偏差和最大化网侧功率因数;第...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 53; no. 2; pp. 62 - 72
Main Authors 高波, 刘川, 韩建, 李泽文, 韦宝泉
Format Journal Article
LanguageChinese
Published 华东交通大学,江西 南昌 330000 16.01.2025
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.240749

Cover

Abstract 针对传统"源-网-荷-储"(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案.该方案通过基于粒子群优化(particle swarm optimization,PSO)的极限学习机(extreme learning machine,ELM)方法实现.在多目标优化运行方案中:第一个优化目标为最大化光伏阵列发电量;第二、三个优化目标分别为最小化负荷电压偏差和最大化网侧功率因数;第四个优化目标则为最大化变换器的利用率.由于多目标优化问题不易实时求解,提出了一种基于优化目标优先权顺序的分层优化思想,将多目标优化问题简化为若干个单目标优化问题.然后,通过将求解的所有最优解集训练为 PSO-ELM 代理模型,以实现所提策略的快速精确执行.最后,通过仿真验证了所提方法的有效性.算例表明所提策略可提升可再生能源的消纳率与系统变换器的利用率,并优化电能质量.
AbstractList 针对传统"源-网-荷-储"(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality conditioner,UPQC)的SNLS系统最优控制方案.该方案通过基于粒子群优化(particle swarm optimization,PSO)的极限学习机(extreme learning machine,ELM)方法实现.在多目标优化运行方案中:第一个优化目标为最大化光伏阵列发电量;第二、三个优化目标分别为最小化负荷电压偏差和最大化网侧功率因数;第四个优化目标则为最大化变换器的利用率.由于多目标优化问题不易实时求解,提出了一种基于优化目标优先权顺序的分层优化思想,将多目标优化问题简化为若干个单目标优化问题.然后,通过将求解的所有最优解集训练为 PSO-ELM 代理模型,以实现所提策略的快速精确执行.最后,通过仿真验证了所提方法的有效性.算例表明所提策略可提升可再生能源的消纳率与系统变换器的利用率,并优化电能质量.
Abstract_FL To address the issues of low renewable energy penetration and poor power quality in traditional source-network-load-storage(SNLS)systems,an optimum control scheme for an SNLS system embedded with a unified power quality conditioner(UPQC)is presented.The proposed scheme is implemented using the particle swarm optimization(PSO)based extreme learning machine(ELM)algorithm.In the multi-objective optimization operation scheme:the first optimization objective is to maximize the power generation of photovoltaic(PV)arrays;the second and third optimization objectives are to minimize the load voltage deviation and maximize the network side power factor,respectively;and the fourth optimization objective is to maximize the utilization rate of the converter.Since the multi-objective optimization problems are difficult to solve in real-time,a hierarchical optimization approach based on the priority order of optimization objectives is presented to simplify the multi-objective optimization problem into several single-objective ones.Then,by training all the optimum solution sets obtained as an PSO-ELM surrogate model,the proposed strategy can be executed quickly and accurately.Finally,the effectiveness of the proposed scheme is verified through simulations.The case studies show that the proposed strategy can improve the absorption rate of renewable energy and the utilization rate of converters,and optimize power quality.
Author 高波
李泽文
韩建
韦宝泉
刘川
AuthorAffiliation 华东交通大学,江西 南昌 330000
AuthorAffiliation_xml – name: 华东交通大学,江西 南昌 330000
Author_FL GAO Bo
LIU Chuan
WEI Baoquan
LI Zewen
HAN Jian
Author_FL_xml – sequence: 1
  fullname: GAO Bo
– sequence: 2
  fullname: LIU Chuan
– sequence: 3
  fullname: HAN Jian
– sequence: 4
  fullname: LI Zewen
– sequence: 5
  fullname: WEI Baoquan
Author_xml – sequence: 1
  fullname: 高波
– sequence: 2
  fullname: 刘川
– sequence: 3
  fullname: 韩建
– sequence: 4
  fullname: 李泽文
– sequence: 5
  fullname: 韦宝泉
BookMark eNotjT1Lw0AAQG-oYK39BW7F9eJ95XI3SqhaiLRincvlkkijXKtBXEUsuLTqoIgIXSy6iIOgkOq_aRJ_hgWdHm95bwmUTM-EAKxgZGHpCLoWW9ocdK1-0tcWYchhsgTKmDsMUobtRVBNkq6PEMW2zYUsg0Y2TmfpqLXbhHVvu3i4yK7e8qdhNpjstXbcudfy9BoW3zfwZ_gJs_OXWvE-Labj_PFs9nWfj56zy4_i9a64nSyDhUgdJmH1nxXQ3qi33S3oNTcb7roHEyk5lBg7PPARVkpjJhgPZSgIogIzzWwRSMJCpalWlDpCaUIDFFERciyIw6gf0ApY_cueKhMps9-JeyfHZj7sxMERQcRGBCFOfwHwGWJv
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.240749
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Optimum control for UPQC-embedded source-network-load-storage system using PSO-ELM
EndPage 72
ExternalDocumentID jdq202502006
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s996-91176db01aac14846e9e8203814c458d924eac3ca3378ac23d0f38e6182743bd3
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords unified power quality conditioner(UPQC)
source-network-load-storage(SNLS)
particle swarm optimization-based extreme learning machine(PSO-ELM)
"源-网-荷-储"系统
统一电能质量调节器
PSO-ELM
光伏
photovoltaic(PV)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s996-91176db01aac14846e9e8203814c458d924eac3ca3378ac23d0f38e6182743bd3
PageCount 11
ParticipantIDs wanfang_journals_jdq202502006
PublicationCentury 2000
PublicationDate 2025-01-16
PublicationDateYYYYMMDD 2025-01-16
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2025
Publisher 华东交通大学,江西 南昌 330000
Publisher_xml – name: 华东交通大学,江西 南昌 330000
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.484382
Snippet 针对传统"源-网-荷-储"(source network load storage,SNLS)系统的可再生能源渗透率低及电能质量差等问题,提出了一种可植入统一电能质量调节器(unified power quality...
SourceID wanfang
SourceType Aggregation Database
StartPage 62
Title 基于PSO-ELM的可植入UPQC的"源-网-荷-储"系统最优控制策略
URI https://d.wanfangdata.com.cn/periodical/jdq202502006
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcWvSinmVFJ3ZpJJcszszlLFj4pb6K3MTGbrB6y12156ElHw0qoHRUToxaIX8SAobPW_6e76Z_heJnYHW_DjMuTjvbz38pLJL5kk43kXuW8UawcpZUZElBVpjaY5S2kqgSNrG0QVuNviejQ7z64s8IWxQyuVXUtrq9lMvn7guZL_8SqkgV_xlOw_eHavUEiAMPgXnuBheP6Vj0nCiWqSWJOE4VMmc7du0OTqNZIIoiDOkEI2iW6SJCIacGPDpnCi-fzczfqILgiQAspQNYqpcYMoH0ISWWJBLVtAtLSUkB-SOLaBGFUAXlXHXROoSJ0oiSkyIVpYRkniCIk1lGoDCjWoAmObCLzc0oMa8UFSgKBJVMMWrtEeTJEoaJ-4Xy2JJIro2GkE5elglGNJMYeDiVBulQfEaWVzYjJazLCGNpxA1M7qAja58dytnwS4VZGWxztti7eySj6rMVRW6TK0QdntJhppIFraADWlI2j_Vo5vjZdQZWD_tCtLCSsarK9PhyEigsoAEwlGATnw6ghUXpfselpQGU7cQFUCk_IXR_uGPFy7s2Ne3rl3Z2a5u5zP4Cy9vAj2t7vE75oHWAW18pb6w4GIoqCyDOEgGx6Grrzz8Y66vThMB6JIjaawISDa6h8VuB8Kxt2XeURDgcJLBHEn8Z7p7vIvVPzSfrXt6blOO-0sVYBe65h31M3QJnXZ3Y57Y-u3T3iX-1u93d6m617DN4_7zz4N3m30n2xjN4L41KD3nA6_v6A_Nr7S_qMPU8PPO8OdrcHbh7vfXg823_effhl-fDV8uX3SazWTVn2Wur-Q0C5u0AcwICKT1fw0zX0GaL1QBaBmALosZ1waFcALLg_zNAyFTPMgNLV2KIsI5u0AzjMTnvLGO_c7xWlvUkiWCm58Y5RhBc8UK_IsM4BHUpAk-Blvwlm-6F4y3cWqx87-If-cd2TUwM9746sra8UEQObV7IL18U8FVo_n
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPSO-ELM%E7%9A%84%E5%8F%AF%E6%A4%8D%E5%85%A5UPQC%E7%9A%84%22%E6%BA%90-%E7%BD%91-%E8%8D%B7-%E5%82%A8%22%E7%B3%BB%E7%BB%9F%E6%9C%80%E4%BC%98%E6%8E%A7%E5%88%B6%E7%AD%96%E7%95%A5&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%AB%98%E6%B3%A2&rft.au=%E5%88%98%E5%B7%9D&rft.au=%E9%9F%A9%E5%BB%BA&rft.au=%E6%9D%8E%E6%B3%BD%E6%96%87&rft.date=2025-01-16&rft.pub=%E5%8D%8E%E4%B8%9C%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%2C%E6%B1%9F%E8%A5%BF+%E5%8D%97%E6%98%8C+330000&rft.issn=1674-3415&rft.volume=53&rft.issue=2&rft.spage=62&rft.epage=72&rft_id=info:doi/10.19783%2Fj.cnki.pspc.240749&rft.externalDocID=jdq202502006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg