基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NA...
Saved in:
| Published in | 电力系统保护与控制 Vol. 52; no. 15; pp. 167 - 177 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-3415 |
| DOI | 10.19783/j.cnki.pspc.231507 |
Cover
| Abstract | 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度. |
|---|---|
| AbstractList | 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度. |
| Abstract_FL | The remaining useful life(RUL)of lithium-ion batteries is a concern for users,as it relates to the timing of battery replacement and safety.Addressing the non-linear variation trend in the capacity of lithium-ion batteries,a method for predicting the RUL is proposed based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)and a bidirectional long short-term memory(BiLSTM)-Transformer.First,the lithium-ion battery capacity data is decomposed using CEEMDAN method.Subsequently,a concatenated model consisting of BiLSTM neural networks and a Transformer network is employed to model and predict the residual sequences obtained from the decomposition and the intrinsic mode component sequences.Finally,the predicted intrinsic mode component sequences and residual sequences are summed,and the RUL is forecast by comparing the final data after summation with the original data.The proposed method is validated using NASA's publicly available battery dataset.Experimental results demonstrate that the mean absolute,root mean square,mean absolute percentage errors and absolute errors are controlled within 0.0173,0.0231,1.2084%and 3 cycles,respectively.The proposed approach effectively enhances the accuracy of RUL prediction for lithium-ion batteries. |
| Author | 武欣雅 吉春霖 曹丽君 段云凤 刘斌 |
| AuthorAffiliation | 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024 |
| AuthorAffiliation_xml | – name: 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024 |
| Author_FL | CAO Lijun JI Chunlin DUAN Yunfeng LIU Bin WU Xinya |
| Author_FL_xml | – sequence: 1 fullname: LIU Bin – sequence: 2 fullname: JI Chunlin – sequence: 3 fullname: CAO Lijun – sequence: 4 fullname: WU Xinya – sequence: 5 fullname: DUAN Yunfeng |
| Author_xml | – sequence: 1 fullname: 刘斌 – sequence: 2 fullname: 吉春霖 – sequence: 3 fullname: 曹丽君 – sequence: 4 fullname: 武欣雅 – sequence: 5 fullname: 段云凤 |
| BookMark | eNotkMtKw0AARWdRwar9ArduE2cymSSz1OILKi7MvuQxkVZNa4K4raXWiqVWyKa68FHQWvC1KEhL6c90kuYvDOjqLA6cC3cBpNySywBYRlBEVNXwalG03MOCWPbLlihhRKCaAmmkqLKAZUTmQcb3CyaEiSGKRtPA4w_D6bA1u-zHlSofBrzT590v_tHkF734vs7bjWh0E_ebYe8prJzzRn322p3-tNYLuX19V9A9w_WdknfMvOiuFgfV6GXE39tRMAi_H_nV23TcmY4nUdDjnxN-O46fa-HgegnMOcaRzzL_XAT65oae3RZye1s72bWc4FNKBEe1DUOzKLagJhEFYRVDE0MkmZRhR7EINZlGmYo1hglTFYcwaNmOLRmJkWUbL4KVv-yZ4TqGe5Avlk49NxnMF-0TCUrJHRAR_As4ZYGy |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.19783/j.cnki.pspc.231507 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Prediction of remaining service life of lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise and BiLSTM-Transformer |
| EndPage | 177 |
| ExternalDocumentID | jdq202415015 |
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
| ID | FETCH-LOGICAL-s995-f7daa8c93c0825613730b3012b9e3f6c59be89e738e35e76f5e0cdfd2a59b44d3 |
| ISSN | 1674-3415 |
| IngestDate | Thu May 29 04:03:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | remaining useful life bidirectional long short term memory network Transformer网络 complete ensemble empirical mode decomposition 锂离子电池 Transformer network 双向长短期记忆网络 剩余使用寿命预测 完全集合经验模态分解 lithium-ion battery |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s995-f7daa8c93c0825613730b3012b9e3f6c59be89e738e35e76f5e0cdfd2a59b44d3 |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_jdq202415015 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 电力系统保护与控制 |
| PublicationTitle_FL | Power System Protection and Control |
| PublicationYear | 2024 |
| Publisher | 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024 |
| Publisher_xml | – name: 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024 |
| SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
| Score | 2.473473 |
| Snippet | 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 167 |
| Title | 基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测 |
| URI | https://d.wanfangdata.com.cn/periodical/jdq202415015 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxR1LT9RAuCFw8WI0anxhODgnsrhtZ9qZY7u0IUa8uCbcyPalaLKiwIUTEkSMBDHZC3rwQaJI4utAYiCEP7PdZf-F3zct3UnWRMWDCWmG7zXfq7PfTGammnaVca4nEPcSrYW8RCk8Ag6DYQLFbAK_8Ike4kHh8ZvW2G16fYJN9A1sKLuW5maDkXD-l-dKjhNVgEFc8ZTsX0S2EAoAaEN84QkRhucfxZh4jAifuA7xKD65RzxOYHrvAETgJgZuIA2gBJXEQqIYcUzilmXDI7yCDQ5tjlzCJdySxMAOEJu4APERBbxIbCGlo2MDu9AlO5dcALdROOoDEM-dunGrOl6qHpXHkCAgUIAcKvuiUkNgsbAX1GcU-0UakMCwC1cnjlSVgwJCSh5FQ7KG6-fEqDyw-xICyuuIRZ0N2ZeF0rir1uJKL4By0HA01pSaSKvBt9iLT8SoNNYhDi1MkxAP7c3Md4s1zhwgOJIIoKqoGHSrkBhwFpNeqBChMFuoiSvyjtAKySRclQT8BD7DRkX6O4sbUxdxDFpsIcxeO-kgmmcAqC6k78AAoefm8fIRjZ0Hw7GUBCocXXApNHlDyCQz4NWVjDr-edJS1x_u1WAYhn_QlBjsuNpxzGHMRhsbwpYOrMiXoldNNXaZQEns-P_TguINy5LUU9S0u8Zh3vy7o5UixLJpCapLplYpzFBHY6bUHHr2PZu8fNWzryL1VEa4xCtLo7B-f2pkemY6HIGpHSvb3UKw2J57L3qISQpYvL5jwICCqaysVuWVPZ6ZV0oDvMqw-B9EW5bornSYMPFRP7zBdNOmLN_AgUWzIfCuSdxwXlif3xGHil_rVVsesqwntfodZT5QPaWdzCfyQ042Kp_W-ubvntEepW92m7trh0-3OwuL6W4j3dhON7-lX1bTJ1ud18vp-kp770Vne7W19a618DhdWT78uNn8sdY7SrZfLXUai-0Pe-nn9XZjp_X9bfrsU3N_o7l_0G5spV8P0pf7nfdLrZ3nZ7Wq71UrY6X8qzalGbwNI7GjWo2HwgxxcQ4mU1BiBVBlGYGIzcQKmQhiLmLb5LHJYttKWFwOoyQyaoChNDLPaf31B_X4vDZklIEeCG0a2ZTCPNcKaQSEPOBhGNjsgjaYu2gy_9GamVRDe_E3-Evaie5YdVnrn300Fw_CFGw2uCKT4Sd6ciDl |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94%E5%99%AA%E5%A3%B0%E5%AE%8C%E5%85%A8%E9%9B%86%E5%90%88%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E4%B8%8EBiLSTM-Transformer%E7%9A%84%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0%E5%89%A9%E4%BD%99%E4%BD%BF%E7%94%A8%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%88%98%E6%96%8C&rft.au=%E5%90%89%E6%98%A5%E9%9C%96&rft.au=%E6%9B%B9%E4%B8%BD%E5%90%9B&rft.au=%E6%AD%A6%E6%AC%A3%E9%9B%85&rft.date=2024-08-01&rft.pub=%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024%25%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024%25%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%BB%8F%E6%B5%8E%E4%B8%8E%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024&rft.issn=1674-3415&rft.volume=52&rft.issue=15&rft.spage=167&rft.epage=177&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231507&rft.externalDocID=jdq202415015 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |