基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测

锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NA...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 15; pp. 167 - 177
Main Authors 刘斌, 吉春霖, 曹丽君, 武欣雅, 段云凤
Format Journal Article
LanguageChinese
Published 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024 01.08.2024
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.231507

Cover

Abstract 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度.
AbstractList 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer 的锂离子电池剩余使用寿命预测方法.首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解.其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测.最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测.采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度.
Abstract_FL The remaining useful life(RUL)of lithium-ion batteries is a concern for users,as it relates to the timing of battery replacement and safety.Addressing the non-linear variation trend in the capacity of lithium-ion batteries,a method for predicting the RUL is proposed based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)and a bidirectional long short-term memory(BiLSTM)-Transformer.First,the lithium-ion battery capacity data is decomposed using CEEMDAN method.Subsequently,a concatenated model consisting of BiLSTM neural networks and a Transformer network is employed to model and predict the residual sequences obtained from the decomposition and the intrinsic mode component sequences.Finally,the predicted intrinsic mode component sequences and residual sequences are summed,and the RUL is forecast by comparing the final data after summation with the original data.The proposed method is validated using NASA's publicly available battery dataset.Experimental results demonstrate that the mean absolute,root mean square,mean absolute percentage errors and absolute errors are controlled within 0.0173,0.0231,1.2084%and 3 cycles,respectively.The proposed approach effectively enhances the accuracy of RUL prediction for lithium-ion batteries.
Author 武欣雅
吉春霖
曹丽君
段云凤
刘斌
AuthorAffiliation 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024
AuthorAffiliation_xml – name: 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024
Author_FL CAO Lijun
JI Chunlin
DUAN Yunfeng
LIU Bin
WU Xinya
Author_FL_xml – sequence: 1
  fullname: LIU Bin
– sequence: 2
  fullname: JI Chunlin
– sequence: 3
  fullname: CAO Lijun
– sequence: 4
  fullname: WU Xinya
– sequence: 5
  fullname: DUAN Yunfeng
Author_xml – sequence: 1
  fullname: 刘斌
– sequence: 2
  fullname: 吉春霖
– sequence: 3
  fullname: 曹丽君
– sequence: 4
  fullname: 武欣雅
– sequence: 5
  fullname: 段云凤
BookMark eNotkMtKw0AARWdRwar9ArduE2cymSSz1OILKi7MvuQxkVZNa4K4raXWiqVWyKa68FHQWvC1KEhL6c90kuYvDOjqLA6cC3cBpNySywBYRlBEVNXwalG03MOCWPbLlihhRKCaAmmkqLKAZUTmQcb3CyaEiSGKRtPA4w_D6bA1u-zHlSofBrzT590v_tHkF734vs7bjWh0E_ebYe8prJzzRn322p3-tNYLuX19V9A9w_WdknfMvOiuFgfV6GXE39tRMAi_H_nV23TcmY4nUdDjnxN-O46fa-HgegnMOcaRzzL_XAT65oae3RZye1s72bWc4FNKBEe1DUOzKLagJhEFYRVDE0MkmZRhR7EINZlGmYo1hglTFYcwaNmOLRmJkWUbL4KVv-yZ4TqGe5Avlk49NxnMF-0TCUrJHRAR_As4ZYGy
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.231507
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Prediction of remaining service life of lithium-ion batteries based on complete ensemble empirical mode decomposition with adaptive noise and BiLSTM-Transformer
EndPage 177
ExternalDocumentID jdq202415015
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s995-f7daa8c93c0825613730b3012b9e3f6c59be89e738e35e76f5e0cdfd2a59b44d3
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords remaining useful life
bidirectional long short term memory network
Transformer网络
complete ensemble empirical mode decomposition
锂离子电池
Transformer network
双向长短期记忆网络
剩余使用寿命预测
完全集合经验模态分解
lithium-ion battery
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s995-f7daa8c93c0825613730b3012b9e3f6c59be89e738e35e76f5e0cdfd2a59b44d3
PageCount 11
ParticipantIDs wanfang_journals_jdq202415015
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024
Publisher_xml – name: 太原科技大学应用科学学院,山西 太原 030024%太原科技大学计算机科学与技术学院,山西 太原 030024%太原科技大学经济与管理学院,山西 太原 030024
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.473473
Snippet 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全.针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪...
SourceID wanfang
SourceType Aggregation Database
StartPage 167
Title 基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
URI https://d.wanfangdata.com.cn/periodical/jdq202415015
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxR1LT9RAuCFw8WI0anxhODgnsrhtZ9qZY7u0IUa8uCbcyPalaLKiwIUTEkSMBDHZC3rwQaJI4utAYiCEP7PdZf-F3zct3UnWRMWDCWmG7zXfq7PfTGammnaVca4nEPcSrYW8RCk8Ag6DYQLFbAK_8Ike4kHh8ZvW2G16fYJN9A1sKLuW5maDkXD-l-dKjhNVgEFc8ZTsX0S2EAoAaEN84QkRhucfxZh4jAifuA7xKD65RzxOYHrvAETgJgZuIA2gBJXEQqIYcUzilmXDI7yCDQ5tjlzCJdySxMAOEJu4APERBbxIbCGlo2MDu9AlO5dcALdROOoDEM-dunGrOl6qHpXHkCAgUIAcKvuiUkNgsbAX1GcU-0UakMCwC1cnjlSVgwJCSh5FQ7KG6-fEqDyw-xICyuuIRZ0N2ZeF0rir1uJKL4By0HA01pSaSKvBt9iLT8SoNNYhDi1MkxAP7c3Md4s1zhwgOJIIoKqoGHSrkBhwFpNeqBChMFuoiSvyjtAKySRclQT8BD7DRkX6O4sbUxdxDFpsIcxeO-kgmmcAqC6k78AAoefm8fIRjZ0Hw7GUBCocXXApNHlDyCQz4NWVjDr-edJS1x_u1WAYhn_QlBjsuNpxzGHMRhsbwpYOrMiXoldNNXaZQEns-P_TguINy5LUU9S0u8Zh3vy7o5UixLJpCapLplYpzFBHY6bUHHr2PZu8fNWzryL1VEa4xCtLo7B-f2pkemY6HIGpHSvb3UKw2J57L3qISQpYvL5jwICCqaysVuWVPZ6ZV0oDvMqw-B9EW5bornSYMPFRP7zBdNOmLN_AgUWzIfCuSdxwXlif3xGHil_rVVsesqwntfodZT5QPaWdzCfyQ042Kp_W-ubvntEepW92m7trh0-3OwuL6W4j3dhON7-lX1bTJ1ud18vp-kp770Vne7W19a618DhdWT78uNn8sdY7SrZfLXUai-0Pe-nn9XZjp_X9bfrsU3N_o7l_0G5spV8P0pf7nfdLrZ3nZ7Wq71UrY6X8qzalGbwNI7GjWo2HwgxxcQ4mU1BiBVBlGYGIzcQKmQhiLmLb5LHJYttKWFwOoyQyaoChNDLPaf31B_X4vDZklIEeCG0a2ZTCPNcKaQSEPOBhGNjsgjaYu2gy_9GamVRDe_E3-Evaie5YdVnrn300Fw_CFGw2uCKT4Sd6ciDl
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94%E5%99%AA%E5%A3%B0%E5%AE%8C%E5%85%A8%E9%9B%86%E5%90%88%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E4%B8%8EBiLSTM-Transformer%E7%9A%84%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0%E5%89%A9%E4%BD%99%E4%BD%BF%E7%94%A8%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%88%98%E6%96%8C&rft.au=%E5%90%89%E6%98%A5%E9%9C%96&rft.au=%E6%9B%B9%E4%B8%BD%E5%90%9B&rft.au=%E6%AD%A6%E6%AC%A3%E9%9B%85&rft.date=2024-08-01&rft.pub=%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024%25%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024%25%E5%A4%AA%E5%8E%9F%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%BB%8F%E6%B5%8E%E4%B8%8E%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024&rft.issn=1674-3415&rft.volume=52&rft.issue=15&rft.spage=167&rft.epage=177&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231507&rft.externalDocID=jdq202415015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg