数据孤岛下基于联邦学习的用户电价响应刻画及其应用

电价型需求响应离不开对用户价格响应的精准刻画,然而用户对价格的响应大多发生在与聚合商的交互中.并且出于隐私保护需求,这些交互数据往往不被公开,呈现为数据孤岛.针对现阶段用户数据隐私需求和电网调度需求相互冲突的问题,提出了基于联邦学习的用户电价响应行为刻画及其应用方法.首先,构建基于联邦学习的用户电价响应行为刻画的分布式交互框架,将原始数据信息交互转变为特征信息交互.然后,利用差分隐私-联邦近端算法实现不同聚合商电价响应模型的参数聚合,获得区域用户电价响应模型.最后,提出嵌入响应模型的配电网优化运行应用方法,利用改进的策略近端优化算法求解系统实时电价和储能出力.算例表明,所提方法在保障用户用能信...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 6; pp. 164 - 176
Main Authors 李锦辉, 吴毓峰, 余涛, 潘振宁
Format Journal Article
LanguageChinese
Published 广东省电网智能量测与先进计量企业重点实验室,广东 广州 510640 16.03.2024
华南理工大学电力学院,广东 广州 510640%华南理工大学电力学院,广东 广州 510640
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.231013

Cover

Abstract 电价型需求响应离不开对用户价格响应的精准刻画,然而用户对价格的响应大多发生在与聚合商的交互中.并且出于隐私保护需求,这些交互数据往往不被公开,呈现为数据孤岛.针对现阶段用户数据隐私需求和电网调度需求相互冲突的问题,提出了基于联邦学习的用户电价响应行为刻画及其应用方法.首先,构建基于联邦学习的用户电价响应行为刻画的分布式交互框架,将原始数据信息交互转变为特征信息交互.然后,利用差分隐私-联邦近端算法实现不同聚合商电价响应模型的参数聚合,获得区域用户电价响应模型.最后,提出嵌入响应模型的配电网优化运行应用方法,利用改进的策略近端优化算法求解系统实时电价和储能出力.算例表明,所提方法在保障用户用能信息隐私下,能准确刻画区域用户电价响应行为,并改善配电网综合效益.
AbstractList 电价型需求响应离不开对用户价格响应的精准刻画,然而用户对价格的响应大多发生在与聚合商的交互中.并且出于隐私保护需求,这些交互数据往往不被公开,呈现为数据孤岛.针对现阶段用户数据隐私需求和电网调度需求相互冲突的问题,提出了基于联邦学习的用户电价响应行为刻画及其应用方法.首先,构建基于联邦学习的用户电价响应行为刻画的分布式交互框架,将原始数据信息交互转变为特征信息交互.然后,利用差分隐私-联邦近端算法实现不同聚合商电价响应模型的参数聚合,获得区域用户电价响应模型.最后,提出嵌入响应模型的配电网优化运行应用方法,利用改进的策略近端优化算法求解系统实时电价和储能出力.算例表明,所提方法在保障用户用能信息隐私下,能准确刻画区域用户电价响应行为,并改善配电网综合效益.
Abstract_FL Price-based demand response cannot live without accurate characterization of user response,but these data mostly exist in the interaction between the demand response aggregator and users.Because of the imperative of privacy protection,the data often remains confidential,manifesting as isolated data islands.In response to the current problem where user data privacy requirements clash with the demands of grid scheduling,this paper proposes a method for characterizing user electricity price response behavior based on federated learning and its application.Initially,a distributed interactive framework for characterizing user electricity price response behavior through federated learning is established,transforming raw data information into feature-based interactions.Subsequently,a differential privacy-federated proximal algorithm is employed to aggregate parameters from various utility providers'electricity price response models,resulting in a regional user electricity price response model.Finally,an application method for optimizing the operation of the distribution network is presented by embedding the response model.An improved strategy proximal optimization algorithm is used to determine real-time electricity prices and energy storage output.Case studies confirm that the proposed approach accurately characterizes regional user electricity price response behavior while preserving the privacy of user energy consumption information and enhancing the overall efficacy of the distribution network.
Author 吴毓峰
余涛
潘振宁
李锦辉
AuthorAffiliation 华南理工大学电力学院,广东 广州 510640%华南理工大学电力学院,广东 广州 510640;广东省电网智能量测与先进计量企业重点实验室,广东 广州 510640
AuthorAffiliation_xml – name: 华南理工大学电力学院,广东 广州 510640%华南理工大学电力学院,广东 广州 510640;广东省电网智能量测与先进计量企业重点实验室,广东 广州 510640
Author_FL YU Tao
WU Yufeng
PAN Zhenning
LI Jinhui
Author_FL_xml – sequence: 1
  fullname: LI Jinhui
– sequence: 2
  fullname: WU Yufeng
– sequence: 3
  fullname: YU Tao
– sequence: 4
  fullname: PAN Zhenning
Author_xml – sequence: 1
  fullname: 李锦辉
– sequence: 2
  fullname: 吴毓峰
– sequence: 3
  fullname: 余涛
– sequence: 4
  fullname: 潘振宁
BookMark eNotjb9Kw1Ache9QwVr7BK6uiffml_snoxS1QsGle7lJbqRR0moQZ0WhKLWDcdFBBykuFRG0mrxObqJvYUSnw4HvfGcJ1aJBpBBaIdgkDhewFppetNc3h_HQMy0gmEAN1QnjtgE2oYuoGcd9F2MglDLh1FG7uHkpxs969qhf7_KPS32f5unV10nyfTrVs2n--VDenpXJUzGal8lbns319ViniR5lZZLpyYU-f69qBSyjhUDux6r5nw3U3dzottpGZ2dru7XeMWLHoUZAwPNUwIQEBb6Q3CbK5q6HmUUCH4BLy8ZMubYjXAFKUMYd6lJGuORUMQ8aaPVPeyyjQEa7vXBwdBhVh73QP7Dw7xoTCj8mvmnI
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.231013
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Characterization of user price response behavior and its application based on federated learning considering a data island
EndPage 176
ExternalDocumentID jdq202406015
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s995-f13ccef68a3e3d8a741e47bc0621fd337a2406eb498b83e856795b5617a75e6c3
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords users'privacy
用户隐私
price-based demand response
电价型需求响应
强化学习
联邦学习
federated learning
reinforcement learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s995-f13ccef68a3e3d8a741e47bc0621fd337a2406eb498b83e856795b5617a75e6c3
PageCount 13
ParticipantIDs wanfang_journals_jdq202406015
PublicationCentury 2000
PublicationDate 2024-03-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 广东省电网智能量测与先进计量企业重点实验室,广东 广州 510640
华南理工大学电力学院,广东 广州 510640%华南理工大学电力学院,广东 广州 510640
Publisher_xml – name: 广东省电网智能量测与先进计量企业重点实验室,广东 广州 510640
– name: 华南理工大学电力学院,广东 广州 510640%华南理工大学电力学院,广东 广州 510640
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.453323
Snippet 电价型需求响应离不开对用户价格响应的精准刻画,然而用户对价格的响应大多发生在与聚合商的交互中.并且出于隐私保护需求,这些交互数据往往不被公开,呈现为数据孤岛.针对现...
SourceID wanfang
SourceType Aggregation Database
StartPage 164
Title 数据孤岛下基于联邦学习的用户电价响应刻画及其应用
URI https://d.wanfangdata.com.cn/periodical/jdq202406015
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRA0AqhoUEgQLyCUrA00YWzvc9yfedThARVkNJFts_mJR2BJE06EEgRKFBwNFBAgSKaIIQEgeR3zjn4C2bGzt2KIPForPV4dp72zsxqd-15FxOeN7u5CRt-BuUqh5DRSIoia6Rh4BdFYjKT4YT-1Wty7jq_siAWJiYvOauWVlfS2Wztt_tK_serAAO_4i7Zf_DsiCgAoA3-hSt4GK5_5WMWS2YEi5rY0G1mYxYLZqHBsREFzEQs5izSTEcIMR0WWYJYpgEZ4D4zgGyYDpiV-90l4RhmgbJiBpA5NTizmnhpFqkaEglCjggCLEKUBLlboiwIOdpHJjF0h2lLDUCTDnLNws2YHS4CexkiFYU1TbiCUihAh5k2yWZJ_UrrmCAxs2pfktFMJBmvTSiG2Eq0RxQzbcYooE-TRRxxbQd1Q1mBd3OMAozazBhEAV1M5NLHJ5XBWtgfrQv0fXeqJeC41qzaCUofB7EwqE-lg2mRCVroqrEtFNH2SQlDTgVtQwSiLxWaGPkLcvzIFmRxsAIq2iFTapTI-k4vQK54Vdzt_qM2MoW3BGSr9DBkOWtRuQoCdg9aB-WfcUACXxMTz8AgLasTtOqQKBVvQK4j3JgpAmdscAOgX51JX-dSfvVvnwNhGucbKU5nvTu3ZpeWl7JZrDOqXcm_nH9-u3sPfYHnBolD3uEAonfTmTqp00zcwO3EKTxXb3QPpKU047I7hCzc_QuE8EPFRb2aADO4wODBh7j6eaR8fWAZCn75oNi0469XJL0bTnI6f8w7WleV07YaIo57E2s3T3hzey8_7m18KLfelZ9eD74-Ld_sDHaefX_Q__Fws9zaHHx7O3z1aNh_v7e-Pex_Huxuly82yp1-ub477O-Wz5-Uj7_ALSCc9OY78XxrrlH_OKWxjAcuFH6YZXkhdRLmYVcnUDTkXKUwGMP42w1DlaC58pQbneow10IqI1IopFSiRC6z8JQ32bvby09707lMtUqVTmXa5RmUuFD-hGmhCp4bIbk-403Vii_W4-Lyouuws394fs47Mv7QznuTK_dX8ynI8lfSC-Tin33duvM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%95%B0%E6%8D%AE%E5%AD%A4%E5%B2%9B%E4%B8%8B%E5%9F%BA%E4%BA%8E%E8%81%94%E9%82%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%94%A8%E6%88%B7%E7%94%B5%E4%BB%B7%E5%93%8D%E5%BA%94%E5%88%BB%E7%94%BB%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%9D%8E%E9%94%A6%E8%BE%89&rft.au=%E5%90%B4%E6%AF%93%E5%B3%B0&rft.au=%E4%BD%99%E6%B6%9B&rft.au=%E6%BD%98%E6%8C%AF%E5%AE%81&rft.date=2024-03-16&rft.pub=%E5%B9%BF%E4%B8%9C%E7%9C%81%E7%94%B5%E7%BD%91%E6%99%BA%E8%83%BD%E9%87%8F%E6%B5%8B%E4%B8%8E%E5%85%88%E8%BF%9B%E8%AE%A1%E9%87%8F%E4%BC%81%E4%B8%9A%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510640&rft.issn=1674-3415&rft.volume=52&rft.issue=6&rft.spage=164&rft.epage=176&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231013&rft.externalDocID=jdq202406015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg