基于安全强化学习的电网稳控策略智能生成方法

新型电力系统的"双高"趋势改变了电力系统经典稳定特性,导致稳定机理更复杂,系统稳定模式更多样,因此基于典型运行方式的在线稳定控制策略面临挑战.为解决新型电力系统的功角稳定问题,提出了基于安全强化学习的稳控策略智能生成方法.首先,建立了电力系统稳控问题的含约束马尔可夫模型,归纳并提出了紧急控制切机动作涉及的安全约束.其次,为了提高对于电网暂态响应的时空特征提取能力,构建了基于图卷积层和长短期记忆单元的特征感知网络.然后,为了提高稳控策略智能体的训练效率,提出了基于内嵌领域知识约束的近端策略优化算法稳控策略训练框架.最后,在IEEE 39 节点系统和某实际电网中进行测试验证.结...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 10; pp. 147 - 155
Main Authors 邱建, 朱煜昆, 张建新, 朱益华, 徐光虎, 涂亮
Format Journal Article
LanguageChinese
Published 中国南方电网有限责任公司,广东 广州 510663%直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663 16.05.2024
广东省新能源电力系统智能运行与控制企业重点实验室,广东 广州 510663
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.231360

Cover

Abstract 新型电力系统的"双高"趋势改变了电力系统经典稳定特性,导致稳定机理更复杂,系统稳定模式更多样,因此基于典型运行方式的在线稳定控制策略面临挑战.为解决新型电力系统的功角稳定问题,提出了基于安全强化学习的稳控策略智能生成方法.首先,建立了电力系统稳控问题的含约束马尔可夫模型,归纳并提出了紧急控制切机动作涉及的安全约束.其次,为了提高对于电网暂态响应的时空特征提取能力,构建了基于图卷积层和长短期记忆单元的特征感知网络.然后,为了提高稳控策略智能体的训练效率,提出了基于内嵌领域知识约束的近端策略优化算法稳控策略训练框架.最后,在IEEE 39 节点系统和某实际电网中进行测试验证.结果表明,所提方法能够根据系统运行状态和故障响应自适应生成切机稳控策略,其决策效果和效率均优于现有的稳控策略.
AbstractList 新型电力系统的"双高"趋势改变了电力系统经典稳定特性,导致稳定机理更复杂,系统稳定模式更多样,因此基于典型运行方式的在线稳定控制策略面临挑战.为解决新型电力系统的功角稳定问题,提出了基于安全强化学习的稳控策略智能生成方法.首先,建立了电力系统稳控问题的含约束马尔可夫模型,归纳并提出了紧急控制切机动作涉及的安全约束.其次,为了提高对于电网暂态响应的时空特征提取能力,构建了基于图卷积层和长短期记忆单元的特征感知网络.然后,为了提高稳控策略智能体的训练效率,提出了基于内嵌领域知识约束的近端策略优化算法稳控策略训练框架.最后,在IEEE 39 节点系统和某实际电网中进行测试验证.结果表明,所提方法能够根据系统运行状态和故障响应自适应生成切机稳控策略,其决策效果和效率均优于现有的稳控策略.
Abstract_FL The trend of a"higher proportion of renewable energy and power electronics"in the new power system has changed the classical stability characteristics of the system.The stability mechanism is more complex,and the system stability modes are more diverse.Online stability control strategies based on typical operating modes face a challenge.Considering the rotor angle stability problem of the new power system,an intelligent generation stability control strategy based on safe reinforcement learning is proposed.First,a constrained Markov model for power system stability control problems is established,and the safety constraints involved in rotor angle stability control are summarized and proposed.Secondly,to improve the ability to extract spatial and temporal features of the power grid's transient response,a feature perception network based on graph convolutional layers and long short-term memory units is constructed.Then,to improve the training efficiency of the stability control agent,a training framework of stability control strategies using proximal policy optimization algorithm based on embedded domain knowledge constraints is proposed.Finally,a case study is performed on the IEEE 39-bus system and a practical power grid.The results show that the proposed method can adaptively generate unit tripping strategies based on the system operating state and fault response,and its decision-making effectiveness and efficiency are superior to existing stability control strategies.
Author 邱建
涂亮
朱煜昆
徐光虎
张建新
朱益华
AuthorAffiliation 中国南方电网有限责任公司,广东 广州 510663%直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663;广东省新能源电力系统智能运行与控制企业重点实验室,广东 广州 510663
AuthorAffiliation_xml – name: 中国南方电网有限责任公司,广东 广州 510663%直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663;广东省新能源电力系统智能运行与控制企业重点实验室,广东 广州 510663
Author_FL ZHANG Jianxin
TU Liang
ZHU Yukun
ZHU Yihua
QIU Jian
XU Guanghu
Author_FL_xml – sequence: 1
  fullname: QIU Jian
– sequence: 2
  fullname: ZHU Yukun
– sequence: 3
  fullname: ZHANG Jianxin
– sequence: 4
  fullname: ZHU Yihua
– sequence: 5
  fullname: XU Guanghu
– sequence: 6
  fullname: TU Liang
Author_xml – sequence: 1
  fullname: 邱建
– sequence: 2
  fullname: 朱煜昆
– sequence: 3
  fullname: 张建新
– sequence: 4
  fullname: 朱益华
– sequence: 5
  fullname: 徐光虎
– sequence: 6
  fullname: 涂亮
BookMark eNotjT9Lw0AcQG-oYK39BK6uiffL3SV3k0jxHxRcupckl5NGuVaD-AFUUJBioQ3oUhe1S12KQ4P9Nr2cH8OCTo-3vLeBKrqrE4S2ALsgAk52UjfWZx23l_Vi1yNAfFxBVfAD6hAKbB3Vs6wTYUyAMZ-LKto142JZ9M3ng7mbmO_CPOZm-r6cv9qXWzv8souBnczK_oed5nb0Vj4XPzcLOxyX909lPi9no020psLzLKn_s4ZaB_utxpHTPDk8buw1nUwI5gCnDFMZMfD8RHCISYx5IKUPTILwpIIQxxHlAaaKqgRYFGEAxYOV-EISUkPbf9nrUKtQn7bT7tWlXg3bqbzwsEcBY2DkFzyvYzE
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.231360
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Intelligent generation method of power system stability control strategy based on safe reinforcement learning
EndPage 155
ExternalDocumentID jdq202410015
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s995-184504db5126e981c3c087dd615d192df1a0cb48704f4fe15bb011f874fe69d33
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords domain knowledge
稳控策略
领域知识
安全强化学习
temporal and spatial characteristics
safety reinforcement learning
时空特征
stability control strategy
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s995-184504db5126e981c3c087dd615d192df1a0cb48704f4fe15bb011f874fe69d33
PageCount 9
ParticipantIDs wanfang_journals_jdq202410015
PublicationCentury 2000
PublicationDate 2024-05-16
PublicationDateYYYYMMDD 2024-05-16
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 中国南方电网有限责任公司,广东 广州 510663%直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663
广东省新能源电力系统智能运行与控制企业重点实验室,广东 广州 510663
Publisher_xml – name: 广东省新能源电力系统智能运行与控制企业重点实验室,广东 广州 510663
– name: 中国南方电网有限责任公司,广东 广州 510663%直流输电技术全国重点实验室(南方电网科学研究院有限责任公司),广东 广州 510663
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4613533
Snippet 新型电力系统的"双高"趋势改变了电力系统经典稳定特性,导致稳定机理更复杂,系统稳定模式更多样,因此基于典型运行方式的在线稳定控制策略面临挑战.为解决新型电力系统的功...
SourceID wanfang
SourceType Aggregation Database
StartPage 147
Title 基于安全强化学习的电网稳控策略智能生成方法
URI https://d.wanfangdata.com.cn/periodical/jdq202410015
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFJ8gXrwYjRq_MBzsiSzOR9tpT6azOxtioidMuJGdmR2_kgUFLlzVRBNDNAESveBF5YIX4oGN_Dfsrjf_Bd97U5YqJAKXyds37e99dTvvNdOO591uZVkQ5fAHbPl-XuMF5HBaZUEtbuW-bPtQFAnc73z_gZx6yO_NiJmR0d_OW0tLi9lkvnzkvpLTRBV4EFfcJXuCyA5BgQE0xBeuEGG4HivGLBVMN1liWMrxqlLkmJQpjYQCWiGR1KkNcOpMS2rTYEZSL82Mz9KYaejOiQCmQCJpMB0gASBJxFKJ-CYmToNwoDFACbylNYlQTEXYscIB3bCXYtqnNhLFAQFo1Tcv99NiRy4oaZhOSAGAqoiEoKBBk-kGYRpmOHEUWT3UTaC4ZLjcyFLNVMiSgNyQsINlCVKoTndi9BTQyAE4pzO5Dv1jO-9b4R-JAlqrys0NUMddTwk5vgpQbfekf4BVHfyIIUzIZdRPx46nDgeDpGF0NXoc3QrWcmYiAkzIX1Xg60Q0UUpINAAmTStX1yccFhAgKZ2AiRMyQxYKawwAY7AAJiA5KdORoxRFQflWKdP8a8hZm8D7MZqFPg7JJhqfOsVbxuCArDgQzVAdzwcxBloHzjCOMUaaRq8Bk6R1jwlP6zB9Qp85j3YZ8xrkbMJ99ovQneN850keVAfB2qQwqM6SPpRv4MIpJRx559mTyfmF-XwSCqao-kTGPwe5Py2e43jDQ8_EGe9sGEsZOmtANl_GnejOAxcPCBz-Bmgp9cH6QQTlhPs5CxFEMRf2tQhMRUONJzjia9xD6-3Ja6j4ncNq09bFTtnqPHKy7OkL3nlbHo-baq676I0sP77k3e1tdPe6K73vb3uvN3s_u713672tr3s7nwefXg1Wfwx2Pww2t_sr3wZb64O1L_2P3V8vdwerG_037_vrO_3ttcvedDOdrk_V7Idfagt4YESguPB5kUEtIttaBXmU-youCii-CihIizJo-XnGIdPgJS_bgcgyyFJKFcMPqYsouuKNduY67aveOFRTmchyqbIs5lK1NOelbIuy1KFsBVlxzRuz9s7aeX1h1o3T9f_cv-GdO5hDbnqjiy-W2mNQpSxmtyiyfwCE6d27
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%AE%89%E5%85%A8%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%94%B5%E7%BD%91%E7%A8%B3%E6%8E%A7%E7%AD%96%E7%95%A5%E6%99%BA%E8%83%BD%E7%94%9F%E6%88%90%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%82%B1%E5%BB%BA&rft.au=%E6%9C%B1%E7%85%9C%E6%98%86&rft.au=%E5%BC%A0%E5%BB%BA%E6%96%B0&rft.au=%E6%9C%B1%E7%9B%8A%E5%8D%8E&rft.date=2024-05-16&rft.pub=%E4%B8%AD%E5%9B%BD%E5%8D%97%E6%96%B9%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510663%25%E7%9B%B4%E6%B5%81%E8%BE%93%E7%94%B5%E6%8A%80%E6%9C%AF%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E5%8D%97%E6%96%B9%E7%94%B5%E7%BD%91%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%29%2C%E5%B9%BF%E4%B8%9C+%E5%B9%BF%E5%B7%9E+510663&rft.issn=1674-3415&rft.volume=52&rft.issue=10&rft.spage=147&rft.epage=155&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231360&rft.externalDocID=jdq202410015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg