基于特征提取与INGO-SVM的变压器故障诊断方法

针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 7; pp. 24 - 32
Main Authors 包金山, 杨定坤, 张靖, 张英, 杨镓荣, 胡克林
Format Journal Article
LanguageChinese
Published 贵州电网有限责任公司电力科学研究院,贵州贵阳 550002 01.04.2024
贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.230936

Cover

Abstract 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization,INGO)进行性能测试,验证了INGO算法的优越性.然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型.最后,对不同变压器故障诊断模型进行实例仿真对比实验.结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断.
AbstractList 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization,INGO)进行性能测试,验证了INGO算法的优越性.然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型.最后,对不同变压器故障诊断模型进行实例仿真对比实验.结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断.
Abstract_FL It is difficult to extract effective features and select model parameters when using a support vector machine(SVM)for transformer fault diagnosis.A transformer fault diagnosis method based on feature extraction and an improved northern goshawk optimization(INGO)algorithm optimized SVM is proposed.First,kernel principal component analysis(KPCA)is used to conduct feature fusion and low dimensional sensitive feature extraction for the 21 dimensional candidate feature.Secondly,strategies such as good point set,random opposition-based learning,and dimensional cross learning are used to improve the northern goshawk optimization(NGO)algorithm.The performance of the INGO algorithm is tested using two typical test functions,verifying its superiority.Then,based on the low dimensional sensitive feature extracted by KPCA,INGO is used to optimize the parameters of the SVM,and a transformer fault diagnosis model is established based on KPCA feature extraction and INGO-SVM.Finally,simulation and comparative experiments are conducted on different transformer fault diagnosis models.The results show that the proposed method has high accuracy and good stability in fault diagnosis,and is more suitable for transformer fault diagnosis.
Author 张靖
胡克林
包金山
杨定坤
张英
杨镓荣
AuthorAffiliation 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025;贵州电网有限责任公司电力科学研究院,贵州贵阳 550002
AuthorAffiliation_xml – name: 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025;贵州电网有限责任公司电力科学研究院,贵州贵阳 550002
Author_FL YANG Dingkun
YANG Jiarong
BAO Jinshan
ZHANG Ying
HU Kelin
ZHANG Jing
Author_FL_xml – sequence: 1
  fullname: BAO Jinshan
– sequence: 2
  fullname: YANG Dingkun
– sequence: 3
  fullname: ZHANG Jing
– sequence: 4
  fullname: ZHANG Ying
– sequence: 5
  fullname: YANG Jiarong
– sequence: 6
  fullname: HU Kelin
Author_xml – sequence: 1
  fullname: 包金山
– sequence: 2
  fullname: 杨定坤
– sequence: 3
  fullname: 张靖
– sequence: 4
  fullname: 张英
– sequence: 5
  fullname: 杨镓荣
– sequence: 6
  fullname: 胡克林
BookMark eNotjzFLw0AYQG-oYK39Ba6uid_l7nI5nKRoLVQ7WFzL5XInjZJWgzgLOlghcWnQIri6iIOL7eCv6aX6Lyzo9Lb3eGuokgwSjdAGBhcLHpCt2FXJad8dpkPlegQE8Suoin1OHUIxW0X1NO2HAAQz5geiirbty2w-yxZ3U_t1XeYPNi_mn1nrsNlxjo4PFpMbmz_a7N4-vZbj25_J8_f7qCzeymJafozX0YqRZ6mu_7OGunu73ca-0-40W42dtpMKQRzmKSaZoJQb0AChxCYCRUIlJRglwNdgfC4Zp5h4NDJC-IEXcCV1oKjUQGpo8097JRMjk5NePLi8SJbBXhyde-BR4Msh8gsQJ1zR
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.230936
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Transformer fault diagnosis method based on feature extraction and INGO-SVM
EndPage 32
ExternalDocumentID jdq202407003
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s993-52c5a59447f0e00ba1fd0c3bcaa0fc906e0f67a5741324df9968287cae8c4ae03
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords 变压器
支持向量机
fault diagnosis
北方苍鹰优化算法
support vector machine
故障诊断
NGO
transformer
核主成分分析
kernel principal component analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s993-52c5a59447f0e00ba1fd0c3bcaa0fc906e0f67a5741324df9968287cae8c4ae03
PageCount 9
ParticipantIDs wanfang_journals_jdq202407003
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 贵州电网有限责任公司电力科学研究院,贵州贵阳 550002
贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025
Publisher_xml – name: 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025
– name: 贵州电网有限责任公司电力科学研究院,贵州贵阳 550002
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.500334
Snippet 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法....
SourceID wanfang
SourceType Aggregation Database
StartPage 24
Title 基于特征提取与INGO-SVM的变压器故障诊断方法
URI https://d.wanfangdata.com.cn/periodical/jdq202407003
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQxcBVCQ4NAgHgFpcAV2uDdtb22qOzLHgEpoSCgdNGeb81LOgJJmnRIUABSQpMIIiRaGkRBQ1LAz-Qu8BfM-PYuFjmJh3SyvOPxPDzr9XjOjyi6TKs0cWmVxFZZGbOs1YY-l4o4t5lzlDmrHIYGZufEzB12c4EvjB35HqxaWl1pTdm1kftK_seqAAO74i7Zf7DskCgAIA_2hRQsDOlf2ZgUnKgmMZoUDFNZkCInUhGjsMgU4CeSQhDZJIoiBDPCI0tAvjF3_VZ8--4sVlJQmw1QpM9AbeM5KKIlklEA5KRQiKwapJBEN4nUvkgQPV1nkDmkGenfazlwfT0X4Mw9caBgEAJopp8xqAqKBgJ4UoCj2VBYDymIzn11ScwwpOgBjVo0CUwSr3wCvwMUgUS1V0wXqAAqBhAWUjENoqlXcJooMaJEYpPUZOtQSRqusMGXG7HMQE8D4hSB5qDntBdQYAuCpZCZ8tbxtXTmFTa-UXxz60ZtFWiFkS2oBxqDAbTwEIpomIE3QdQsdAq9aZRsQ4hCw5vsCsfbK4JoMO4gicEN4eFwxtOg2-bh2MQCL6cfVD40fmIg0A-gtvPowdTS8pLFnQIq--20cu__PGw_wUaGMQNP2z2awrBKg5hG7f_hzupgAMED74bPMLcQQh3MhzNwj8PrGXiS5YzXf_Oja5UqPJEQlyUPVa9PEkPBrx4W22_F67iycy_wGudPRMfr6d6k7vfdk9HY2v1T0bXuh9293fX9lzvdb896G2-6G1t7X9cHvXF_-3l34213_XX33cfe5ouf2-9_fH7V2_rU29rpfdk8Hc03i_nGTFxfYhIv49JYnlpecsVY7mhFaatMXJvarGXLksKHkIqKOpGXHBx7mNq0nVICr6CwZSUtKyuanYnGO4871dlo0grqUubSUsoW0GOly1zJqaWulImw1blootZ1sf5GLS-GNjr_h_IL0bGDTnMxGl95ulpNgMe90rrkrfoL9i2ZfQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E4%B8%8EINGO-SVM%E7%9A%84%E5%8F%98%E5%8E%8B%E5%99%A8%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%8C%85%E9%87%91%E5%B1%B1&rft.au=%E6%9D%A8%E5%AE%9A%E5%9D%A4&rft.au=%E5%BC%A0%E9%9D%96&rft.au=%E5%BC%A0%E8%8B%B1&rft.date=2024-04-01&rft.pub=%E8%B4%B5%E5%B7%9E%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E8%B4%B5%E5%B7%9E%E8%B4%B5%E9%98%B3+550002&rft.issn=1674-3415&rft.volume=52&rft.issue=7&rft.spage=24&rft.epage=32&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230936&rft.externalDocID=jdq202407003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg