基于特征提取与INGO-SVM的变压器故障诊断方法
针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk...
Saved in:
| Published in | 电力系统保护与控制 Vol. 52; no. 7; pp. 24 - 32 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
贵州电网有限责任公司电力科学研究院,贵州贵阳 550002
01.04.2024
贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-3415 |
| DOI | 10.19783/j.cnki.pspc.230936 |
Cover
| Abstract | 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization,INGO)进行性能测试,验证了INGO算法的优越性.然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型.最后,对不同变压器故障诊断模型进行实例仿真对比实验.结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断. |
|---|---|
| AbstractList | 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.首先,使用核主成分分析(kernel principal component analysis,KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取.其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization,NGO)进行改进.通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization,INGO)进行性能测试,验证了INGO算法的优越性.然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型.最后,对不同变压器故障诊断模型进行实例仿真对比实验.结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断. |
| Abstract_FL | It is difficult to extract effective features and select model parameters when using a support vector machine(SVM)for transformer fault diagnosis.A transformer fault diagnosis method based on feature extraction and an improved northern goshawk optimization(INGO)algorithm optimized SVM is proposed.First,kernel principal component analysis(KPCA)is used to conduct feature fusion and low dimensional sensitive feature extraction for the 21 dimensional candidate feature.Secondly,strategies such as good point set,random opposition-based learning,and dimensional cross learning are used to improve the northern goshawk optimization(NGO)algorithm.The performance of the INGO algorithm is tested using two typical test functions,verifying its superiority.Then,based on the low dimensional sensitive feature extracted by KPCA,INGO is used to optimize the parameters of the SVM,and a transformer fault diagnosis model is established based on KPCA feature extraction and INGO-SVM.Finally,simulation and comparative experiments are conducted on different transformer fault diagnosis models.The results show that the proposed method has high accuracy and good stability in fault diagnosis,and is more suitable for transformer fault diagnosis. |
| Author | 张靖 胡克林 包金山 杨定坤 张英 杨镓荣 |
| AuthorAffiliation | 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025;贵州电网有限责任公司电力科学研究院,贵州贵阳 550002 |
| AuthorAffiliation_xml | – name: 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025;贵州电网有限责任公司电力科学研究院,贵州贵阳 550002 |
| Author_FL | YANG Dingkun YANG Jiarong BAO Jinshan ZHANG Ying HU Kelin ZHANG Jing |
| Author_FL_xml | – sequence: 1 fullname: BAO Jinshan – sequence: 2 fullname: YANG Dingkun – sequence: 3 fullname: ZHANG Jing – sequence: 4 fullname: ZHANG Ying – sequence: 5 fullname: YANG Jiarong – sequence: 6 fullname: HU Kelin |
| Author_xml | – sequence: 1 fullname: 包金山 – sequence: 2 fullname: 杨定坤 – sequence: 3 fullname: 张靖 – sequence: 4 fullname: 张英 – sequence: 5 fullname: 杨镓荣 – sequence: 6 fullname: 胡克林 |
| BookMark | eNotjzFLw0AYQG-oYK39Ba6uid_l7nI5nKRoLVQ7WFzL5XInjZJWgzgLOlghcWnQIri6iIOL7eCv6aX6Lyzo9Lb3eGuokgwSjdAGBhcLHpCt2FXJad8dpkPlegQE8Suoin1OHUIxW0X1NO2HAAQz5geiirbty2w-yxZ3U_t1XeYPNi_mn1nrsNlxjo4PFpMbmz_a7N4-vZbj25_J8_f7qCzeymJafozX0YqRZ6mu_7OGunu73ca-0-40W42dtpMKQRzmKSaZoJQb0AChxCYCRUIlJRglwNdgfC4Zp5h4NDJC-IEXcCV1oKjUQGpo8097JRMjk5NePLi8SJbBXhyde-BR4Msh8gsQJ1zR |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.19783/j.cnki.pspc.230936 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Transformer fault diagnosis method based on feature extraction and INGO-SVM |
| EndPage | 32 |
| ExternalDocumentID | jdq202407003 |
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ |
| ID | FETCH-LOGICAL-s993-52c5a59447f0e00ba1fd0c3bcaa0fc906e0f67a5741324df9968287cae8c4ae03 |
| ISSN | 1674-3415 |
| IngestDate | Thu May 29 04:03:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | 变压器 支持向量机 fault diagnosis 北方苍鹰优化算法 support vector machine 故障诊断 NGO transformer 核主成分分析 kernel principal component analysis |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s993-52c5a59447f0e00ba1fd0c3bcaa0fc906e0f67a5741324df9968287cae8c4ae03 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_jdq202407003 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 电力系统保护与控制 |
| PublicationTitle_FL | Power System Protection and Control |
| PublicationYear | 2024 |
| Publisher | 贵州电网有限责任公司电力科学研究院,贵州贵阳 550002 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025 |
| Publisher_xml | – name: 贵州大学电气工程学院,贵州贵阳 550025%重庆邮电大学先进制造工程学院,重庆 400065%贵州大学电气工程学院,贵州贵阳 550025 – name: 贵州电网有限责任公司电力科学研究院,贵州贵阳 550002 |
| SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463 |
| Score | 2.500334 |
| Snippet | 针对使用支持向量机(support vector machine,SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法.... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 24 |
| Title | 基于特征提取与INGO-SVM的变压器故障诊断方法 |
| URI | https://d.wanfangdata.com.cn/periodical/jdq202407003 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQxcBVCQ4NAgHgFpcAV2uDdtb22qOzLHgEpoSCgdNGeb81LOgJJmnRIUABSQpMIIiRaGkRBQ1LAz-Qu8BfM-PYuFjmJh3SyvOPxPDzr9XjOjyi6TKs0cWmVxFZZGbOs1YY-l4o4t5lzlDmrHIYGZufEzB12c4EvjB35HqxaWl1pTdm1kftK_seqAAO74i7Zf7DskCgAIA_2hRQsDOlf2ZgUnKgmMZoUDFNZkCInUhGjsMgU4CeSQhDZJIoiBDPCI0tAvjF3_VZ8--4sVlJQmw1QpM9AbeM5KKIlklEA5KRQiKwapJBEN4nUvkgQPV1nkDmkGenfazlwfT0X4Mw9caBgEAJopp8xqAqKBgJ4UoCj2VBYDymIzn11ScwwpOgBjVo0CUwSr3wCvwMUgUS1V0wXqAAqBhAWUjENoqlXcJooMaJEYpPUZOtQSRqusMGXG7HMQE8D4hSB5qDntBdQYAuCpZCZ8tbxtXTmFTa-UXxz60ZtFWiFkS2oBxqDAbTwEIpomIE3QdQsdAq9aZRsQ4hCw5vsCsfbK4JoMO4gicEN4eFwxtOg2-bh2MQCL6cfVD40fmIg0A-gtvPowdTS8pLFnQIq--20cu__PGw_wUaGMQNP2z2awrBKg5hG7f_hzupgAMED74bPMLcQQh3MhzNwj8PrGXiS5YzXf_Oja5UqPJEQlyUPVa9PEkPBrx4W22_F67iycy_wGudPRMfr6d6k7vfdk9HY2v1T0bXuh9293fX9lzvdb896G2-6G1t7X9cHvXF_-3l34213_XX33cfe5ouf2-9_fH7V2_rU29rpfdk8Hc03i_nGTFxfYhIv49JYnlpecsVY7mhFaatMXJvarGXLksKHkIqKOpGXHBx7mNq0nVICr6CwZSUtKyuanYnGO4871dlo0grqUubSUsoW0GOly1zJqaWulImw1blootZ1sf5GLS-GNjr_h_IL0bGDTnMxGl95ulpNgMe90rrkrfoL9i2ZfQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E4%B8%8EINGO-SVM%E7%9A%84%E5%8F%98%E5%8E%8B%E5%99%A8%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E5%8C%85%E9%87%91%E5%B1%B1&rft.au=%E6%9D%A8%E5%AE%9A%E5%9D%A4&rft.au=%E5%BC%A0%E9%9D%96&rft.au=%E5%BC%A0%E8%8B%B1&rft.date=2024-04-01&rft.pub=%E8%B4%B5%E5%B7%9E%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E8%B4%B5%E5%B7%9E%E8%B4%B5%E9%98%B3+550002&rft.issn=1674-3415&rft.volume=52&rft.issue=7&rft.spage=24&rft.epage=32&rft_id=info:doi/10.19783%2Fj.cnki.pspc.230936&rft.externalDocID=jdq202407003 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |