考虑天气特征与多变量相关性的配电网短期负荷预测

针对配电网短期负荷预测受到众多复杂天气特征等随机不确定性因素影响,以及传统预测模型难以有效分析不同特征序列之间的相关性等问题,提出一种考虑天气特征与多变量相关性的配电网短期负荷预测方法.首先,提出多变量快速最大信息系数(multi-variable rapid maximal information coefficient,MVRapidMIC)提取相关性高的天气特征序列.其次,引入探索性因子分析法(exploratory factor analysis,EFA),对高相关性特征序列进行降维处理.最后,将维度分段(dimension-segment-wise,DSW)机制和两阶段注意力(two...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 6; pp. 131 - 141
Main Authors 于越, 葛磊蛟, 金朝阳, 王玥, 丁磊
Format Journal Article
LanguageChinese
Published 电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061%智能电网教育部重点实验室(天津大学),天津 300072 16.03.2024
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.231329

Cover

Abstract 针对配电网短期负荷预测受到众多复杂天气特征等随机不确定性因素影响,以及传统预测模型难以有效分析不同特征序列之间的相关性等问题,提出一种考虑天气特征与多变量相关性的配电网短期负荷预测方法.首先,提出多变量快速最大信息系数(multi-variable rapid maximal information coefficient,MVRapidMIC)提取相关性高的天气特征序列.其次,引入探索性因子分析法(exploratory factor analysis,EFA),对高相关性特征序列进行降维处理.最后,将维度分段(dimension-segment-wise,DSW)机制和两阶段注意力(two-stage attention,TSA)机制与Informer模型结合,提高预测模型对不同特征序列相关性的分析能力.通过DTU 7K 47节点实际配电网的历史负荷数据开展仿真测试,验证所提方法的预测精度、鲁棒性和时效性.
AbstractList 针对配电网短期负荷预测受到众多复杂天气特征等随机不确定性因素影响,以及传统预测模型难以有效分析不同特征序列之间的相关性等问题,提出一种考虑天气特征与多变量相关性的配电网短期负荷预测方法.首先,提出多变量快速最大信息系数(multi-variable rapid maximal information coefficient,MVRapidMIC)提取相关性高的天气特征序列.其次,引入探索性因子分析法(exploratory factor analysis,EFA),对高相关性特征序列进行降维处理.最后,将维度分段(dimension-segment-wise,DSW)机制和两阶段注意力(two-stage attention,TSA)机制与Informer模型结合,提高预测模型对不同特征序列相关性的分析能力.通过DTU 7K 47节点实际配电网的历史负荷数据开展仿真测试,验证所提方法的预测精度、鲁棒性和时效性.
Abstract_FL To address challenges in short-term load forecasting for distribution networks,challenges such as the impact of complex weather features and the difficulty in analyzing correlations between different feature sequences using traditional models,a method considering those issues is proposed.First,the method presents a multi-variable rapid maximal information coefficient(MVRapidMIC)to extract highly correlated weather feature sequences.Exploratory factor analysis(EFA)is then employed for dimensionality reduction on these sequences.Finally,the dimension-segment-wise(DSW)and two-stage attention(TSA)mechanisms are integrated with the Informer model to enhance the model's ability to analyze correlations between different feature sequences.Simulation tests using historical load data from the DTU 7K 47-bus distribution system validate the forecasting accuracy,robustness,and timeliness of the method.
Author 葛磊蛟
丁磊
王玥
于越
金朝阳
AuthorAffiliation 电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061%智能电网教育部重点实验室(天津大学),天津 300072
AuthorAffiliation_xml – name: 电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061%智能电网教育部重点实验室(天津大学),天津 300072
Author_FL YU Yue
WANG Yue
GE Leijiao
JIN Zhaoyang
DING Lei
Author_FL_xml – sequence: 1
  fullname: YU Yue
– sequence: 2
  fullname: GE Leijiao
– sequence: 3
  fullname: JIN Zhaoyang
– sequence: 4
  fullname: WANG Yue
– sequence: 5
  fullname: DING Lei
Author_xml – sequence: 1
  fullname: 于越
– sequence: 2
  fullname: 葛磊蛟
– sequence: 3
  fullname: 金朝阳
– sequence: 4
  fullname: 王玥
– sequence: 5
  fullname: 丁磊
BookMark eNotzT1Lw0AcgPEbKlhrP4Gra-L_7nJJbpRSX6Dg0r1ckjtplLQaxLVii4i0pdBBqxCQgjgIghbroJ_G5NJvYUGnZ_s9a6gQtSKJ0AYGE3PHpVuh6UdHTbMdt32TUEwJL6Aith3LoBZmq6gcx00PgGLGbJcXUTXvXOZ3o3T6nL2O9fVn-n3xMx-k00k6vF1cDfX9PO29ZZ0nPekuen09numvkU5esockf0_y_sfisZvNbtbRihLHsSz_t4TqO9V6Zc-oHezuV7ZrRsw5MXwQSnoskERRF3PleYQAkQ5mHgMJtnId5fvCCogCF-yAAnECBT4VTNCAcFpCm3_suYiUiA4bYevsNFoOG2FwsqQssAET-gvTYWee
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.231329
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Short-term load prediction method of distribution networks considering weather features and multivariate correlations
EndPage 141
ExternalDocumentID jdq202406012
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s992-c0afeb5de2f3819fbb2202e715b50e06f87fcca4d2f0806d3027df0c3a5a3d293
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords short-term electricity load forecasting
weather features
天气特征
最大信息系数
distribution network
配电网
maximal information coefficient
Informer framework
短期负荷预测
Informer框架
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s992-c0afeb5de2f3819fbb2202e715b50e06f87fcca4d2f0806d3027df0c3a5a3d293
PageCount 11
ParticipantIDs wanfang_journals_jdq202406012
PublicationCentury 2000
PublicationDate 2024-03-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-16
  day: 16
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061%智能电网教育部重点实验室(天津大学),天津 300072
Publisher_xml – name: 电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061%智能电网教育部重点实验室(天津大学),天津 300072
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.459996
Snippet 针对配电网短期负荷预测受到众多复杂天气特征等随机不确定性因素影响,以及传统预测模型难以有效分析不同特征序列之间的相关性等问题,提出一种考虑天气特征与多变量相关性...
SourceID wanfang
SourceType Aggregation Database
StartPage 131
Title 考虑天气特征与多变量相关性的配电网短期负荷预测
URI https://d.wanfangdata.com.cn/periodical/jdq202406012
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3JahRBtAnx4kUUFbdIDtYpTJyprbuOVZkOQdBThNxC9eYGYzTJJaeICSISQyAHjUJAAuJBEDQYD_odfoCz5C98r7oz3ZIhLghD8-bVW-tVV70qqqo970qaWR6IJK0lQkiYoLBGTaWC1aLIMmlFYKnF9Y7rN-TUTX5tRswMDX-v7FpaXIjG46WB50r-JaqAg7jiKdm_iGxfKCAAhvjCEyIMzz-KMQkD3KkQMASUIqpBQkE0J1qRUBJTJ4qT0CeBIkZhkQkhcyQhJwYYw4JYaQSCSaICEioS-AgDlzJIhkXAyFAg6NK-K9Ik4I4YSpsOAzIFAqbpzADMJNFN5FITCIOFhhcAsBgf2TV1ciTyBqaaKFdkQpFGY1A4IyYHjBMFBGC20wI04EvpmsQnWgvsoLq_AOlItCNBNPCVJQGanmvSDCUiBjWVJK5-0MHcryZioN4MK0l8FB6YAtCiurBCOe4sy899uldhUN1JjKVx2iG0gEQfQJl0JufxFkig5REOOzkCRaEcSgx11jOi-2F2kcMi1zh0SFTooqJRXY6BOqWuEZgG_nJ1auKgnTl1EGawhCp4XQ9Tjh2E1zU3UKn8MUiIIcEjVAzydWB9_D8_yrcDAHGUH79SjjFMdCuL5HiwpgbZmaiO8oJWerPqkN0ospA8-2vk17AdSixwhdRlFnHr3p3xufm5eJziraeqzKP6u1vvJg-wPeFNR5AcHqOQb9Qriz1FYoxHzisjK94E2P8PoqVU5UIBg3lD9bsVosF8Lor9D5hzUoVXNeJ-7b7zxRVraPjVw2a7M4qtzLZuVdLp6ZPeiWIePKrzTu2UN7R0-7QX9pYf915utHfedT5sdp9-aX979GPveXtnq73-Yv_JevfVXnv1Y2f5bXdrZX91rbu52_260d1-33m93fu03Vv7vP9mpbP77Iw3PRlOT0zViu-81OZx73tct1kawXhBM1w-yqKIQvWlfkNEop7WZRb4GYwzPKEZTG9lgjstkqweMyssS2C6ctYbbt1vpee8UUsza6NESC5Tbjm3ePumlAGLhRI8js97I4XXs0U3Pj9bjdaF35Rf9I6XPcUlb3jh4WI6ApOSheiyi-9PqTncbA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%80%83%E8%99%91%E5%A4%A9%E6%B0%94%E7%89%B9%E5%BE%81%E4%B8%8E%E5%A4%9A%E5%8F%98%E9%87%8F%E7%9B%B8%E5%85%B3%E6%80%A7%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E4%BA%8E%E8%B6%8A&rft.au=%E8%91%9B%E7%A3%8A%E8%9B%9F&rft.au=%E9%87%91%E6%9C%9D%E9%98%B3&rft.au=%E7%8E%8B%E7%8E%A5&rft.date=2024-03-16&rft.pub=%E7%94%B5%E7%BD%91%E6%99%BA%E8%83%BD%E5%8C%96%E8%B0%83%E5%BA%A6%E4%B8%8E%E6%8E%A7%E5%88%B6%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E5%B1%B1%E4%B8%9C%E5%A4%A7%E5%AD%A6%29%2C%E5%B1%B1%E4%B8%9C+%E6%B5%8E%E5%8D%97+250061%25%E6%99%BA%E8%83%BD%E7%94%B5%E7%BD%91%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%28%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%29%2C%E5%A4%A9%E6%B4%A5+300072&rft.issn=1674-3415&rft.volume=52&rft.issue=6&rft.spage=131&rft.epage=141&rft_id=info:doi/10.19783%2Fj.cnki.pspc.231329&rft.externalDocID=jdq202406012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg