基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测

针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型.首先,利用K-means++聚类算法将历史光伏数据划分为若干天气类型,使用WGAN-GP生成符合各天气类型数据分布规律的高质量新样本,实现训练集数据增强.其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和长短期记忆网络(long...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 51; no. 9; pp. 108 - 118
Main Authors 雷柯松, 吐松江·卡日, 伊力哈木·亚尔买买提, 苏宁, 吴现, 崔传世
Format Journal Article
LanguageChinese
Published 新疆大学电气工程学院,新疆 乌鲁木齐 830049%国网综合能源服务集团有限公司,北京 100053 01.05.2023
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.221287

Cover

Abstract 针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型.首先,利用K-means++聚类算法将历史光伏数据划分为若干天气类型,使用WGAN-GP生成符合各天气类型数据分布规律的高质量新样本,实现训练集数据增强.其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和长短期记忆网络(long short-term memory,LSTM)在时间序列预测上的优势,提升预测模型学习光伏功率与气象数据间长期映射关系的能力.此外,引入注意力机制(Attention)弥补输入序列长时LSTM难以保留关键信息的不足.实验结果表明:基于WGAN-GP对各类型天气样本扩充能有效提高预测精度;与3种经典预测模型相比,所提出的CNN-LSTM-Attention模型具有更高的预测精度.
AbstractList 针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型.首先,利用K-means++聚类算法将历史光伏数据划分为若干天气类型,使用WGAN-GP生成符合各天气类型数据分布规律的高质量新样本,实现训练集数据增强.其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和长短期记忆网络(long short-term memory,LSTM)在时间序列预测上的优势,提升预测模型学习光伏功率与气象数据间长期映射关系的能力.此外,引入注意力机制(Attention)弥补输入序列长时LSTM难以保留关键信息的不足.实验结果表明:基于WGAN-GP对各类型天气样本扩充能有效提高预测精度;与3种经典预测模型相比,所提出的CNN-LSTM-Attention模型具有更高的预测精度.
Author 苏宁
吐松江·卡日
雷柯松
崔传世
吴现
伊力哈木·亚尔买买提
AuthorAffiliation 新疆大学电气工程学院,新疆 乌鲁木齐 830049%国网综合能源服务集团有限公司,北京 100053
AuthorAffiliation_xml – name: 新疆大学电气工程学院,新疆 乌鲁木齐 830049%国网综合能源服务集团有限公司,北京 100053
Author_FL YILIHAMU·Yaermaimaiti
LEI Kesong
SU Ning
TUSONGJIANG·Kari
CUI Chuanshi
WU Xian
Author_FL_xml – sequence: 1
  fullname: LEI Kesong
– sequence: 2
  fullname: TUSONGJIANG·Kari
– sequence: 3
  fullname: YILIHAMU·Yaermaimaiti
– sequence: 4
  fullname: SU Ning
– sequence: 5
  fullname: WU Xian
– sequence: 6
  fullname: CUI Chuanshi
Author_xml – sequence: 1
  fullname: 雷柯松
– sequence: 2
  fullname: 吐松江·卡日
– sequence: 3
  fullname: 伊力哈木·亚尔买买提
– sequence: 4
  fullname: 苏宁
– sequence: 5
  fullname: 吴现
– sequence: 6
  fullname: 崔传世
BookMark eNotjT9Lw0AcQG-oYK39BK6uF-93l8vlBocQtAqxChYcS3K5k0S5VBPxC1TEP1RwFCHg7uhS_DhNg9_Cgk5veby3gTq2sBqhLSAOSOGzndxR9iJzJuVEOZQC9UUHdcETLmYu8HXUL8ssIYQB554vu2i3qeeL-exsEAzx4KR5fQ6HQxydjo5wUFXaVllh27dpW38u3-vm7mHx_dI81u3s_udjuvx62kRrJr4sdf-fPTTa3xuFBzg6HhyGQYRLKQGnkkqlXMYNB2O4Nq5nYs19zWUsE0iMKxQVJkk1kwmlgnlqJRnBQIKiKWE9tP2XvY2tie35OC9uru1qOM7TK0ooI5IAsF_VKFhd
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.221287
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention
EndPage 118
ExternalDocumentID jdq202309011
GrantInformation_xml – fundername: (国家自然科学基金); (新疆维吾尔自治区自然科学基金面上项目); (新疆维吾尔自治区优秀青年科技人才培养项目)
  funderid: (国家自然科学基金); (新疆维吾尔自治区自然科学基金面上项目); (新疆维吾尔自治区优秀青年科技人才培养项目)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s991-d929cc435f51ff5ef46fae58e59a9b1bf47c27fbde39b22736c5eff73191c2d03
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 长短期记忆网络
注意力机制
生成对抗网络
卷积神经网络
光伏功率预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s991-d929cc435f51ff5ef46fae58e59a9b1bf47c27fbde39b22736c5eff73191c2d03
PageCount 11
ParticipantIDs wanfang_journals_jdq202309011
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2023
Publisher 新疆大学电气工程学院,新疆 乌鲁木齐 830049%国网综合能源服务集团有限公司,北京 100053
Publisher_xml – name: 新疆大学电气工程学院,新疆 乌鲁木齐 830049%国网综合能源服务集团有限公司,北京 100053
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.5349107
Snippet 针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient...
SourceID wanfang
SourceType Aggregation Database
StartPage 108
Title 基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测
URI https://d.wanfangdata.com.cn/periodical/jdq202309011
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEI5KuXBBIEC8inrApyolcWInPnBwstlWiK6QWERv1ebFS1oKu730XIR4qEgcEdJK3Dlyqfg53Vb8C2Ym7sZokXhIq2h2PB7PzLexx1nbcZybXIqCi6J2xaCGCQqk_G5c557rlYEKgxpwL_Af3Y2eXH8Q3tkUmwuLI2vV0s44Xy12f7uv5H9QBR7girtk_wHZmVJgAA34whUQhutfYcwywVSXJZplIV7j7OGa7rlr96iAszhNez337v3-hqvH42ZhI8sipkA0JKLLdIdlkqkUaagVw0eRupTFDUdTUQTaWRyxTDHNqbpkCZQmdnpLOkPkm4oJcpKAJQ2RkCoQ6DJF7YKMDokTo37kZExHVD1myeyxITYLypKIjAWru0R0WJK1IuAzLtuYlZCJPoqnnKqC0g7TPglETIu2auOvtswGZQHa0ARHxyc6KNCKJBMPnUWOQrolJIZOea16cC4x4dQQRd9-1sKtlY10d1CTkhRFSMSS6oUmLgCYllag5YkdAu3TAos0NdgKQ_AINp7OK18xhscpyiWArd86jZwOuLIS45lpinFCFpHoEKBQ5htkIYANAhg0aD8gGUnh8oxGCH8TYQSBEG2cAwKsMzLK2Iu16AepSTOED34kvKFTBLDBQqcrPm32tsZXGYUuJE7CHoDNicNNR6Os0dT3Yisx85uBem7Mx4eXNOgXw2dPVrdH28Uqh4TM5HG_Hqb-tHyBuHq44fqUc5pHkHBbz2FMzoq7wa1BDw_pm32H-ZCUqp3DB5DS26-UEH4QhcIsTcB0kCs8RRGXUs-cN6efoeG35s2m7YPDejB8ZGW6_XPOWTNFXdZNf3PeWdh9fMG5PZ0cHB7sm_5l-vH9fM9y_GnvePL16PNk-urN4fcP07eT4_3XP77sHX17d9Hpd7N-uu6aV6-4I1wKWcKkqSjAsVr4dS2qOpT1oBJxJdRA5X5eh1HBozovq0DlHGZAsgChOoLx3C946QWXnMXh82F12VmuFcdTM-GiZFgFhapKKYs8KkKRB0EZXnGWjLdbpmcdbdkoXf1D-TXnTHunXncWxy93qiWYJ4zzG4TrT44XuqQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EWGAN-GP%E5%92%8CCNN-LSTM-Attention%E7%9A%84%E7%9F%AD%E6%9C%9F%E5%85%89%E4%BC%8F%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%9B%B7%E6%9F%AF%E6%9D%BE&rft.au=%E5%90%90%E6%9D%BE%E6%B1%9F%C2%B7%E5%8D%A1%E6%97%A5&rft.au=%E4%BC%8A%E5%8A%9B%E5%93%88%E6%9C%A8%C2%B7%E4%BA%9A%E5%B0%94%E4%B9%B0%E4%B9%B0%E6%8F%90&rft.au=%E8%8B%8F%E5%AE%81&rft.date=2023-05-01&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%96%B0%E7%96%86+%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830049%25%E5%9B%BD%E7%BD%91%E7%BB%BC%E5%90%88%E8%83%BD%E6%BA%90%E6%9C%8D%E5%8A%A1%E9%9B%86%E5%9B%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%8C%97%E4%BA%AC+100053&rft.issn=1674-3415&rft.volume=51&rft.issue=9&rft.spage=108&rft.epage=118&rft_id=info:doi/10.19783%2Fj.cnki.pspc.221287&rft.externalDocID=jdq202309011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg