基于随机森林和最大互信息系数关键特征选择的配电网拓扑辨识研究
随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algori...
        Saved in:
      
    
          | Published in | 电力系统保护与控制 Vol. 52; no. 17; pp. 1 - 11 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-3415 | 
| DOI | 10.19783/j.cnki.pspc.240088 | 
Cover
| Abstract | 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algorithm,BA)优化BP(back propagation,BP)神经网络模型对配电网拓扑模型进行辨识.通过IEEE 33节点配电网和PG&E 69节点配电网进行仿真分析,验证所提模型的可行性. | 
    
|---|---|
| AbstractList | 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algorithm,BA)优化BP(back propagation,BP)神经网络模型对配电网拓扑模型进行辨识.通过IEEE 33节点配电网和PG&E 69节点配电网进行仿真分析,验证所提模型的可行性. | 
    
| Abstract_FL | As the integration of a high proportion distributed generation(DG)into the power grid increases,topological changes in the distribution network become more frequent.A method for the topological identification in the distribution network based on the random forest(RF)and the maximal information coefficient(MIC)for key feature selection is proposed to address the issues of high measurement feature requirements and low identification accuracy in that identification for such networks containing DG.First,considering the uncertainty and correlation of wind and solar power output,typical scenarios of wind and solar power output are obtained based on the Frank-Copula function,and combined with different distribution network topologies to construct a dataset.Then,feature selection is performed using RF and MIC to identify the most important and key non-redundant features for topological identification.Finally,the bat algorithm(BA)is employed to optimize a back propagation(BP)neural network model for identification.Simulation analyses are conducted on the IEEE33 and the PG&E69-bus distribution networks to validate the feasibility of the proposed model. | 
    
| Author | 王健 张微 付玉 杨光兵 徐潇源 翟苏巍 沈赋  | 
    
| AuthorAffiliation | 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217 | 
    
| AuthorAffiliation_xml | – name: 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217 | 
    
| Author_FL | SHEN Fu XU Xiaoyuan YANG Guangbing ZHAI Suwei WANG Jian ZHANG Wei FU Yu  | 
    
| Author_FL_xml | – sequence: 1 fullname: SHEN Fu – sequence: 2 fullname: ZHANG Wei – sequence: 3 fullname: XU Xiaoyuan – sequence: 4 fullname: WANG Jian – sequence: 5 fullname: FU Yu – sequence: 6 fullname: YANG Guangbing – sequence: 7 fullname: ZHAI Suwei  | 
    
| Author_xml | – sequence: 1 fullname: 沈赋 – sequence: 2 fullname: 张微 – sequence: 3 fullname: 徐潇源 – sequence: 4 fullname: 王健 – sequence: 5 fullname: 付玉 – sequence: 6 fullname: 杨光兵 – sequence: 7 fullname: 翟苏巍  | 
    
| BookMark | eNotjU1LAkEAQOdgkJW_oGvX3WZ2ZnZnjiF9gdDFUxeZnd0NLVZria4KGYh9oBmBSB8UlBcNpKCN7M-4s-6_SKjTg3d4bwGk_LLvArCMoI64xfBqSZf-flGvBBWpGwRCxlIgjUyLaJggOg8yQVC0IcSIUpPxNNiN7sNJeJl0r1QvVE8DdXcbtc9Vrxo9v0zC9uTnUdWG8ehL3bxF9VHSGcSNz2hcS6oN1ezH3dOkfhF33uPvlmpeq0ZrOn6dDs_ih07c_1gCc544CNzMPxdBfmM9n93Scjub29m1nBZwjjTDJlIwmzLHRAYXUCKCMJKeKVzhuZJLNjOWzRAxPduWyGGUYs6kwyzXooThRbDylz0Rvif8vUKpfHzkz4aFknNoQIMgC0KEfwFmjnbh | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.19783/j.cnki.pspc.240088 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | Topological identification of distribution networks based on key feature selection using RF and MIC | 
    
| EndPage | 11 | 
    
| ExternalDocumentID | jdq202417001 | 
    
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ  | 
    
| ID | FETCH-LOGICAL-s991-2b4ca8b58d6129a0c14131cf6aeafec9c8c147b8146fbbc1d855398cd87e75483 | 
    
| ISSN | 1674-3415 | 
    
| IngestDate | Thu May 29 04:03:04 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17 | 
    
| Keywords | 拓扑辨识 不确定性 相关性 correlation distribution network 配电网 特征选择 topology identification uncertainty feature selection  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s991-2b4ca8b58d6129a0c14131cf6aeafec9c8c147b8146fbbc1d855398cd87e75483 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | wanfang_journals_jdq202417001 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-01 | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 电力系统保护与控制 | 
    
| PublicationTitle_FL | Power System Protection and Control | 
    
| PublicationYear | 2024 | 
    
| Publisher | 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217 | 
    
| Publisher_xml | – name: 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217 | 
    
| SSID | ssib003155689 ssib023166999 ssib002424069 ssj0002912115 ssib051374514 ssib036435463  | 
    
| Score | 2.4965646 | 
    
| Snippet | 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 1 | 
    
| Title | 基于随机森林和最大互信息系数关键特征选择的配电网拓扑辨识研究 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/jdq202417001 | 
    
| Volume | 52 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1674-3415 databaseCode: DOA dateStart: 20080101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912115 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8qPTinsnWTzGRmjpPdLEXQU4XipSTZXb9gbW176akFK5T6QWtFKMUPFLSXVigKrlj_TDfb_Re-N8lms-7iRy_D2_dm3neSN9mZiWFcoTKsWFalnKM-t3OUBTLnswBmrb7vhNWyL4XE3cjXbzjjN-m1STY5MDSTWbU0PxeMhQt995UcJaqAg7jiLtn_iGzKFBAAQ3yhhQhD-08xJh4jskRcRTyKrfCIJ4kEoEQ8h8iCJjlE2UR5GuMRyfUoi4hC0kfkEaMoUTzhA1QESkSZ2EeYRAFDTlybuK4exYirRwmGSBRKtQhOhCSuRJLr4UAgAX9AIh-XKIl9UEOqScChqDEgjmkRRSLNpLO0NSA1RiBDJRAAZYSDnVUeByIAQp1snZ3hCSLAIjejP8cW_BbbKItaikIPIEZoNzrYKu0rIdrMITGR4lqIQ42A6HYoYHMBdYqNV14XBTyf14OLRHANgFb5TheOAsFoFAj-ZtnXMRZN15vFF5COgdBeiAHtehCAGBAGHmGZoAJQJMrp55S0M0fnxvKTzuB3SZQFF2E7LUw9ECLER3s1GIUqnOE3v1nbjTr3XC0hZqBokg-QAH_WDjDort4kTAOUdnYwFTENek1pRzyxoEslPEsT6sy2ul3W9c9IvFRk4hZUDuJP8dLC4a5OLH09qIIGSiivbxaCzbGs1OzuPD6S5614b3JSXzic5qBwZNkChFnZGy3PlBNmpi6Na5Keigdf3eqSJ6zdvzs2PTsdjuGy8Phbmb8dJX-vPIMpi0dymseMIQsKoXzmLVRSseNe-MwjH48oTH_DbNBxZOcNhg0TmuwHNZhpc8qShRlYDFsSz5DEheSp6cnZb6j41V619ebJWtWv3c7U-RMnjRPJBH1ExXfbU8bAwp3Txq3Gm_pB_Vlr83m0VY_e70SvXzXWn0Rbi40PHw_q6wc_30VLu82979HLz43lvdbGTnPlW2N_qbW4Eq1uNzcftZafNje-NH-sRasvopW1w_1Ph7uPm283mttfzxgTJW-iMJ5LvkqTm8VVolZAQ18ETJRhbij9fGjCNMAMq45f8auVUIYCMDzAf1aqQRCaZcGYLUVYFrzCGRX2WWOw9qBWOWeMmMIpCzsfWiK04FFJBYNWVkPbgoHc8s8bw4krppKHzuxUNoQX_kK_aBzv3KEuGYNzD-crwzCFmgsu66D_AtTNCsw | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97%E5%92%8C%E6%9C%80%E5%A4%A7%E4%BA%92%E4%BF%A1%E6%81%AF%E7%B3%BB%E6%95%B0%E5%85%B3%E9%94%AE%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E6%8B%93%E6%89%91%E8%BE%A8%E8%AF%86%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%B2%88%E8%B5%8B&rft.au=%E5%BC%A0%E5%BE%AE&rft.au=%E5%BE%90%E6%BD%87%E6%BA%90&rft.au=%E7%8E%8B%E5%81%A5&rft.date=2024-09-01&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E4%B8%8A%E6%B5%B7+200240%25%E4%BA%91%E5%8D%97%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650217&rft.issn=1674-3415&rft.volume=52&rft.issue=17&rft.spage=1&rft.epage=11&rft_id=info:doi/10.19783%2Fj.cnki.pspc.240088&rft.externalDocID=jdq202417001 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |