基于随机森林和最大互信息系数关键特征选择的配电网拓扑辨识研究

随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algori...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 52; no. 17; pp. 1 - 11
Main Authors 沈赋, 张微, 徐潇源, 王健, 付玉, 杨光兵, 翟苏巍
Format Journal Article
LanguageChinese
Published 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217 01.09.2024
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.19783/j.cnki.pspc.240088

Cover

Abstract 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algorithm,BA)优化BP(back propagation,BP)神经网络模型对配电网拓扑模型进行辨识.通过IEEE 33节点配电网和PG&E 69节点配电网进行仿真分析,验证所提模型的可行性.
AbstractList 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森林(random forest,RF)算法和最大互信息系数(maximal information coefficient,MIC)关键特征选择的配电网拓扑辨识方法.首先,考虑风光出力的不确定性和相关性,基于Frank-Copula函数得到典型风光出力场景,与配电网不同拓扑相结合构建数据集.然后,根据RF和MIC进行特征选择,筛选出对拓扑辨识最重要且不含冗余信息的关键特征.最后,利用蝙蝠算法(bat algorithm,BA)优化BP(back propagation,BP)神经网络模型对配电网拓扑模型进行辨识.通过IEEE 33节点配电网和PG&E 69节点配电网进行仿真分析,验证所提模型的可行性.
Abstract_FL As the integration of a high proportion distributed generation(DG)into the power grid increases,topological changes in the distribution network become more frequent.A method for the topological identification in the distribution network based on the random forest(RF)and the maximal information coefficient(MIC)for key feature selection is proposed to address the issues of high measurement feature requirements and low identification accuracy in that identification for such networks containing DG.First,considering the uncertainty and correlation of wind and solar power output,typical scenarios of wind and solar power output are obtained based on the Frank-Copula function,and combined with different distribution network topologies to construct a dataset.Then,feature selection is performed using RF and MIC to identify the most important and key non-redundant features for topological identification.Finally,the bat algorithm(BA)is employed to optimize a back propagation(BP)neural network model for identification.Simulation analyses are conducted on the IEEE33 and the PG&E69-bus distribution networks to validate the feasibility of the proposed model.
Author 王健
张微
付玉
杨光兵
徐潇源
翟苏巍
沈赋
AuthorAffiliation 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217
AuthorAffiliation_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217
Author_FL SHEN Fu
XU Xiaoyuan
YANG Guangbing
ZHAI Suwei
WANG Jian
ZHANG Wei
FU Yu
Author_FL_xml – sequence: 1
  fullname: SHEN Fu
– sequence: 2
  fullname: ZHANG Wei
– sequence: 3
  fullname: XU Xiaoyuan
– sequence: 4
  fullname: WANG Jian
– sequence: 5
  fullname: FU Yu
– sequence: 6
  fullname: YANG Guangbing
– sequence: 7
  fullname: ZHAI Suwei
Author_xml – sequence: 1
  fullname: 沈赋
– sequence: 2
  fullname: 张微
– sequence: 3
  fullname: 徐潇源
– sequence: 4
  fullname: 王健
– sequence: 5
  fullname: 付玉
– sequence: 6
  fullname: 杨光兵
– sequence: 7
  fullname: 翟苏巍
BookMark eNotjU1LAkEAQOdgkJW_oGvX3WZ2ZnZnjiF9gdDFUxeZnd0NLVZria4KGYh9oBmBSB8UlBcNpKCN7M-4s-6_SKjTg3d4bwGk_LLvArCMoI64xfBqSZf-flGvBBWpGwRCxlIgjUyLaJggOg8yQVC0IcSIUpPxNNiN7sNJeJl0r1QvVE8DdXcbtc9Vrxo9v0zC9uTnUdWG8ehL3bxF9VHSGcSNz2hcS6oN1ezH3dOkfhF33uPvlmpeq0ZrOn6dDs_ih07c_1gCc544CNzMPxdBfmM9n93Scjub29m1nBZwjjTDJlIwmzLHRAYXUCKCMJKeKVzhuZJLNjOWzRAxPduWyGGUYs6kwyzXooThRbDylz0Rvif8vUKpfHzkz4aFknNoQIMgC0KEfwFmjnbh
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19783/j.cnki.pspc.240088
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Topological identification of distribution networks based on key feature selection using RF and MIC
EndPage 11
ExternalDocumentID jdq202417001
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s991-2b4ca8b58d6129a0c14131cf6aeafec9c8c147b8146fbbc1d855398cd87e75483
ISSN 1674-3415
IngestDate Thu May 29 04:03:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords 拓扑辨识
不确定性
相关性
correlation
distribution network
配电网
特征选择
topology identification
uncertainty
feature selection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s991-2b4ca8b58d6129a0c14131cf6aeafec9c8c147b8146fbbc1d855398cd87e75483
PageCount 11
ParticipantIDs wanfang_journals_jdq202417001
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 电力系统保护与控制
PublicationTitle_FL Power System Protection and Control
PublicationYear 2024
Publisher 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217
Publisher_xml – name: 昆明理工大学电力工程学院,云南 昆明 650500%上海交通大学电子信息与电气工程系,上海 200240%云南电网有限责任公司电力科学研究院,云南 昆明 650217
SSID ssib003155689
ssib023166999
ssib002424069
ssj0002912115
ssib051374514
ssib036435463
Score 2.4965646
Snippet 随着高比例分布式能源(distributed generation,DG)的接入,配电网的拓扑变化更加频繁.针对含DG的配电网拓扑辨识所需量测特征多、辨识准确率低的问题,提出基于随机森...
SourceID wanfang
SourceType Aggregation Database
StartPage 1
Title 基于随机森林和最大互信息系数关键特征选择的配电网拓扑辨识研究
URI https://d.wanfangdata.com.cn/periodical/jdq202417001
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1674-3415
  databaseCode: DOA
  dateStart: 20080101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912115
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNT24kUUFb8qPTinsnWTzGRmjpPdLEXQU4XipSTZXb9gbW176akFK5T6QWtFKMUPFLSXVigKrlj_TDfb_Re-N8lms-7iRy_D2_dm3neSN9mZiWFcoTKsWFalnKM-t3OUBTLnswBmrb7vhNWyL4XE3cjXbzjjN-m1STY5MDSTWbU0PxeMhQt995UcJaqAg7jiLtn_iGzKFBAAQ3yhhQhD-08xJh4jskRcRTyKrfCIJ4kEoEQ8h8iCJjlE2UR5GuMRyfUoi4hC0kfkEaMoUTzhA1QESkSZ2EeYRAFDTlybuK4exYirRwmGSBRKtQhOhCSuRJLr4UAgAX9AIh-XKIl9UEOqScChqDEgjmkRRSLNpLO0NSA1RiBDJRAAZYSDnVUeByIAQp1snZ3hCSLAIjejP8cW_BbbKItaikIPIEZoNzrYKu0rIdrMITGR4lqIQ42A6HYoYHMBdYqNV14XBTyf14OLRHANgFb5TheOAsFoFAj-ZtnXMRZN15vFF5COgdBeiAHtehCAGBAGHmGZoAJQJMrp55S0M0fnxvKTzuB3SZQFF2E7LUw9ECLER3s1GIUqnOE3v1nbjTr3XC0hZqBokg-QAH_WDjDort4kTAOUdnYwFTENek1pRzyxoEslPEsT6sy2ul3W9c9IvFRk4hZUDuJP8dLC4a5OLH09qIIGSiivbxaCzbGs1OzuPD6S5614b3JSXzic5qBwZNkChFnZGy3PlBNmpi6Na5Keigdf3eqSJ6zdvzs2PTsdjuGy8Phbmb8dJX-vPIMpi0dymseMIQsKoXzmLVRSseNe-MwjH48oTH_DbNBxZOcNhg0TmuwHNZhpc8qShRlYDFsSz5DEheSp6cnZb6j41V619ebJWtWv3c7U-RMnjRPJBH1ExXfbU8bAwp3Txq3Gm_pB_Vlr83m0VY_e70SvXzXWn0Rbi40PHw_q6wc_30VLu82979HLz43lvdbGTnPlW2N_qbW4Eq1uNzcftZafNje-NH-sRasvopW1w_1Ph7uPm283mttfzxgTJW-iMJ5LvkqTm8VVolZAQ18ETJRhbij9fGjCNMAMq45f8auVUIYCMDzAf1aqQRCaZcGYLUVYFrzCGRX2WWOw9qBWOWeMmMIpCzsfWiK04FFJBYNWVkPbgoHc8s8bw4krppKHzuxUNoQX_kK_aBzv3KEuGYNzD-crwzCFmgsu66D_AtTNCsw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97%E5%92%8C%E6%9C%80%E5%A4%A7%E4%BA%92%E4%BF%A1%E6%81%AF%E7%B3%BB%E6%95%B0%E5%85%B3%E9%94%AE%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E6%8B%93%E6%89%91%E8%BE%A8%E8%AF%86%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E6%B2%88%E8%B5%8B&rft.au=%E5%BC%A0%E5%BE%AE&rft.au=%E5%BE%90%E6%BD%87%E6%BA%90&rft.au=%E7%8E%8B%E5%81%A5&rft.date=2024-09-01&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650500%25%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E4%B8%8A%E6%B5%B7+200240%25%E4%BA%91%E5%8D%97%E7%94%B5%E7%BD%91%E6%9C%89%E9%99%90%E8%B4%A3%E4%BB%BB%E5%85%AC%E5%8F%B8%E7%94%B5%E5%8A%9B%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E+650217&rft.issn=1674-3415&rft.volume=52&rft.issue=17&rft.spage=1&rft.epage=11&rft_id=info:doi/10.19783%2Fj.cnki.pspc.240088&rft.externalDocID=jdq202417001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg